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SOME REMARK ON OSCILLATION OF SECOND

ORDER IMPULSIVE DELAY DYNAMIC EQUATIONS

ON TIME SCALES

Gokula Nanda Chhatria

Sambalpur University, Sambalpur, INDIA

ABSTRACT. This article deals with the oscillation criteria for a very extensively
studied second order impulsive delay dynamic equations on time scale by using
the Riccati transformation technique. Some examples are given to show the effect

of impulse and to illustrate our main results.

1. Introduction

Oscillation theory of impulsive differential/difference equation has brought
the attention of many researchers, as it provides a more adequate mathematical
model for numerous process and phenomena studied in physics, biology, engi-
neering and to mention a few. In the literature, most of the results obtained
for difference equations is the continuous analogues of differential equations and
vice versa. Hence, it was an immediate question to find a way for which one
can unify the qualitative properties of both equations. In 1988 Stefen Hilger
introduced the concept of time scales calculus, which unify the continuous and
discrete calculus in his Ph.D. thesis [15]. The study of impulsive dynamic equa-
tions on time scales has been initiated by Benchora et al. [5].
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In [18], Huang has considered the second order impulsive dynamic equation
of the form⎧⎪⎨
⎪⎩
[
r(t)

(
yΔ(t)

)γ]Δ
+f

(
t, yσ(t)

)
= 0, t ∈ JT := [0,∞) ∩ T, t �= tk, t ≥ t0,

y
(
t+k

)
= gk

(
y(t−k )

)
, yΔ(t+k ) = hk

(
yΔ(t−k )

)
, k ∈ N,

y(t+0 ) = y0, yΔ(t+0 ) = yΔ0

and improved the results of [16] and [17].

In [2], Agwa et al. have studied the oscillation properties of the solution
of second order impulsive dynamic equations of the form⎧⎪⎨
⎪⎩
[
r(t)g

(
yΔ(t)

)]Δ
+f

(
t, yσ(t)

)
=g

(
t, yσ(t)

)
, t∈JT :=[0,∞) ∩ T, t �= tk, t≥ t0,

y
(
t+k

)
= Ik

(
y(t−k )

)
, yΔ(t+k )=Jk

(
yΔ(t−k )

)
, k ∈ N,

y(t+0 )=y0, yΔ(t+0 )=yΔ0

and improved the results of [16,17] and [18].

In [19], Huang and Wen have considered the second order forced impulsive
dynamic equation of the form⎧⎨

⎩
yΔΔ(t) + p(t)f

(
yσ(t)

)
= e(t), t ∈ JT := [0,∞) ∩ T, t �= tk, t ≥ t0,

y(t+k ) = aky(t
−
k ), yΔ(t+k ) = bky

Δ(t−k ), k ∈ N,

y
(
t+0

)
= y0, yΔ(t+0 ) = yΔ0

and improved the results of [20].

Motivated by the above mention work, our objective is to study the second
order impulsive nonlinear dynamic equations of the form

[r(t)|uΔ(t)|γ−1uΔ(t)]Δ + f
(
t, u(t), u(t− δ)

)
= 0,

t ∈ JT := [0,∞) ∩ T, t �= θk (1a)

r(θ+k )|uΔ(θ+k )|γ−1uΔ(θ+k ) = Ik
(
r(θk)|uΔ(θk)|γ−1uΔ(θk)

)
, k ∈ N, (1b)

u(t) = φ(t), t0 − δ ≤ t ≤ t0 (1c)

where γ > 0, T is an unbounded above time scale with 0 ∈ T and θk ∈ T, k ∈ N

are the fixed moment of impulse satisfying the properties:

0 ≤ t0 < θ1 < θ2 < · · · < θk, lim
k→∞

θk = ∞.

u(θ+k ) = lim
h→0+

u(θk + h), uΔ(θ+k ) = lim
h→0+

uΔ(θk + h),

represent the right limit of u(t) at t = θk in the sense of time scale, if θk is right
scattered, then

u(θ+k ) = u(θk), uΔ(θ+k ) = uΔ(θk).

Similarly, we can define

u(θ−k ), uΔ(θ−k ).
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Throughout this paper, we assume that the following hypotheses hold:

(H1) r(t) > 0, δ ∈ R+, t− δ ∈ T, θk − θk−1 > δ;

(H2) f ∈Crd

(
T×R×R,R

)
, xf(t, x, y)> 0 for x, y≥ 0 and f(t,x,y)

ϕ(y) ≥ q(t)(y �= 0),

where q(t)∈Crd

(
T, [t0,∞)T

)
, ϕ∈C(R,R) and yϕ(y)>0(y �=0), ϕ′(y)≥0;

(H3) Ik : R → R is a continuous function, Ik(0) = 0 and there exist positive

numbers bk, b
∗
k such that bk ≤ Ik(x)

x ≤ b∗k, u �= 0, k ∈ N.

To the best of the authors knowledge, this equation has not been considered
before. In this direction, we refer the reader to some works [2] – [4], [7] – [13] and
the references cited therein. About the time scale concept and fundamentals
of time scale calculus we refer the monographs [7] and [8].

���������� 1.1 ([10])� A function f : T → R is said to be absolutely continuous
on T if for every ε > 0 there exists a δ > 0 such that if {[ck, dk) ∩ T}nk=1,
with ck, dk ∈ T, is a finite pairwise disjoint family of subintervals of T satisfying

n∑
k=1

(dk − ck) < δ, then

n∑
k=1

|f(dk)− f(ck)| < ε.

ACi={u : JT → R is i-times Δ-differentiable, whose ith delta derivative uΔ(i)

is absolutely continuous}.
PC={u : JT → R is rd-continuous at the points θk, k ∈ N for which

u(θ−k ), u(θ
+
k ), u

Δ(θ−k ) and uΔ(θ+k ) exist with u(θ−k ) = u(θk), u
Δ(θ−k )=uΔ(θk)}.

���������� 1.2� A solution of u(t) of (1) is said to be regular if it is defined
on some half line [tx,∞)T ⊂ [t0,∞)T and sup{|u(t)| : t ≥ tx} > 0. A regular
solution u(t) of (1) is said to be eventually positive (eventually negative), if there
exists t1 > 0 such that u(t) > 0 (u(t) < 0), for t ≥ t1.

���������� 1.3� A function u(t) ∈ PC ∩ AC2(JT \ {θ1, θ2, . . .},R) is called a
solution of (1) if :

(I) it satisfies (1a) a.e on JT \ {θk}, k ∈ N;

(II) for t = θk, k ∈ N, u(t) satisfies (1b);

(III) and satisfies the initial condition (1c).

���������� 1.4� A nontrivial solution u(t) of (1) is said to be nonoscillatory,
if there exists a point t0 ≥ 0 such that u(t) has a constant sign for t ≥ t0.
Otherwise, the solution u(t) is said to be oscillatory.
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2. Basic Lemmas

	�

� 2.1� Let u(t) be a solution of (1). Furthermore, assume that there exists
T ≥ t0 such that u(t) > 0 for t ≥ T and

(H4)
∫∞
θj

1

r
1
γ (s)

∏
θj<θk<s b

1
γ

k Δs = ∞.

Then uΔ(θ+k ) ≥ 0 and uΔ(t) ≥ 0 for t ∈ (θk, θk+1]T, where θk ≥ T.

P r o o f. Let u(t) be an eventually positive solution of (1) for t ≥ t0. Without
loss of generality we assume that u(t) > 0 and u(t − δ) > 0 for t ≥ t1 > t0 + δ.
Set

z(t) = r(t)|uΔ(t)|γ−1uΔ(t).

Therefore, from (1) we get

zΔ(t) = −f
(
t, u(t), u(t− δ)

) ≤ −q(t)ϕ
(
u(t− δ)

) ≤ 0.

Therefore, zΔ(t) is monotonically decreasing on [t2,∞)T, t2 > t1 + δ. Assume
that θk > t2 for k ∈ N. Consider the interval (θk, θk+1]T, k ∈ N. We assert that
uΔ(θk) ≥ 0. If not, there exists θj ≥ t2 such that uΔ(θj) < 0 and hence

r(θ+j )|uΔ(θ+j )|γ−1uΔ(θ+j ) = Ik
(
r(θj)|uΔ(θj)|γ−1uΔ(θj)

)
≤ bjr(θj)|uΔ(θj)|γ−1uΔ(θj) < 0.

Let
r(θj)|uΔ(θj)|γ−1uΔ(θj) = −αγ , α > 0.

Now for t ∈ (θj, θj+1]T, we have

r(θj+1)|uΔ(θj+1)|γ−1uΔ(θj+1) ≤ r(θ+j )|uΔ(θ+j )|γ−1uΔ(θ+j ),

that is,

r(θj+1)|uΔ(θj+1)|γ−1uΔ(θj+1) ≤ Ij
(
r(θj)|uΔ(θj)|γ−1uΔ(θj)

)
= −bjα

γ < 0.

If t ∈ (θj+1, θj+2]T, then

r(θj+2)|uΔ(θj+2)|γ−1uΔ(θj+2) ≤ r(θ+j+1)|uΔ(θ+j+1)|γ−1uΔ(θ+j+1)

= Ij+1

(
r(θj+1)|uΔ(θj+1)|γ−1uΔ(θj+1)

)
≤ bj+1r(θj+1)|uΔ(θj+1)|γ−1uΔ(θj+1),

that is,

uΔ(θj+2) ≤ −bjbj+1α
γ < 0.

Hence, by the method of induction,

r(t)|uΔ(t)|γ−1uΔ(t) ≤ −bjbj+1bj+2 · · · bj+nα
γ

= −αγ
∏

θj≤θk<t

bk < 0, for t ∈ (θj+n−1, θj+n]T.
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Therefore,

uΔ(t) ≤
−α

∏
θj≤θk<t b

1
γ

k

r
1
γ (t)

. (2)

Integrating (2) from θj to t, we get

u(t) ≤ u(θ+j )− α

t∫
θj

(
1

r(s)

)1
γ ∏
θj<θk<s

b
1
γ

k Δs

→ −∞ as t → ∞
due to (H4), a contradiction to the fact that u(t) > 0 eventually. Hence our
assertation holds, that is, uΔ(θk) ≥ 0 for θk ≥ T and hence uΔ(t) > uΔ(θ+k ).
Since zΔ(t) ≤ 0 for any t ∈ (θk, θk+1]T, θk ≥ T , then

r(t)|uΔ(t)|γ−1uΔ(t) ≥ r(θk+1)|uΔ(θk+1)|γ−1uΔ(θk+1) ≥ 0, t ∈ (θk, θk+1]T.

Therefore,

uΔ
(
θ+k

) ≥ 0 and uΔ(t) ≥ 0 for t ∈ (
θk, θk+i]T, t ≥ t2.

Therefore, the lemma is proved. �

Remark 1� If u(t) is an eventually negative solution of (1). Then using (H4),
it is easy to prove that

uΔ(θ+k ) ≤ 0 and uΔ(t) ≤ 0

for t ∈ (θk, θk+1]T and θk ≥ T ≥ t0.

We need the time scale version of the following well-known results for our use
in the sequel.

	�

� 2.2 ([1])� Let y, f ∈ Crd and p ∈ R. Then

yΔ(t) ≤ p(t)y(t) + f(t)

implies that for all t ∈ T

y(t) ≤ y(t0)ep
(
t, t0

)
+

t∫
t0

ep
(
t, σ(s)

)
f(s)Δs.

	�

� 2.3 ( [17])� Assume that

(i) m ∈ PC ∩AC1(JT \ {θk},R);
(ii) k ∈ N and t ≥ t0, we have

mΔ(t) ≤ p(t)m(t) + v(t), t ∈ JT = [0,∞) ∩ T, t �= θk,

m(θ+k ) ≤ dkm(θk) + ek.
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Then the following inequality holds

m(t)≤m(t0)
∏

t0<θk<t

dkep(t0, t) +

t∫
t0

∏
s<θk<t

dkep
(
t, σ(s)

)
v(s)Δs

+
∑

t0<θk<t

⎛
⎝ ∏

θk<θj<t

djep(t, θk)

⎞
⎠ ek, t ≥ t0.

3. Main Results

�
����
 3.1� Let all conditions of Lemma 2.1 hold. Furthermore, assume that

(H5)
∫∞
t0

∏
t0<θk<t

1
b∗k
q(s)Δs = ∞.

Then every solution of (1) oscillates.

P r o o f. Suppose, on the contrary, that u(t) is a nonoscillatory solution of (1).
Without loss of generality, we assume that u(t) > 0, u(t − δ) > 0 for t ≥ t1.
Hence by Lemma 2.1, there exists t2 > t1 such that uΔ(t) > 0 for t ∈ (θk, θk+1]T,
k ∈ N and θk ≥ t2. Let

w(t) =
r(t)|uΔ(t)|γ−1uΔ(t)

ϕ
(
u(t− δ)

) , (3)

then w(θ+k ) ≥ 0 and w(t) ≥ 0 for θk ≥ t3. From (3), for t �= θk we have

wΔ(t) =
[r(t)|uΔ(t)|γ−1uΔ(t)]Δ

ϕ
(
u(σ(t)− δ)

) − r
(
σ(t)

)|uΔ
(
σ(t)

)∣∣γ−1
uΔ

(
σ(t)

)
ϕΔ

(
u(t− δ)

)
ϕ
(
u(t− δ)

)
ϕ
(
u(σ(t)− δ)

)

≤ [r(t)|uΔ(t)|γ−1uΔ(t)]Δ

ϕ
(
u(σ(t)− δ)

)

≤ −f
(
t, u(t), u(t− δ)

)
ϕ
(
u(t− δ)

) ,

where we have used the fact that uΔ(t) > 0. Therefore, due to (H2) we get

wΔ(t) ≤ −q(t), t �= θk. (4)

We note that

w(t+k ) =
r(θ+k )|uΔ(θ+k )|γ−1uΔ(θ+k )

ϕ
(
u(θ+k − δ)

) ≤ b∗kr(θk)|uΔ(θk)|γ−1uΔ(θk)

ϕ
(
u(θk − δ)

) = b∗kw(θk).
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Now, we have the following impulsive dynamics inequalities

wΔ(t) ≤ −q(t), t �= θk,

w(θ+k ) ≤ b∗kw(θk), k ∈ N

and by Lemma 2.3 it follows that

w(t) ≤ w(t3)
∏

t3<θk<t

b∗k −
t∫

t3

∏
s<θk<t

b∗kq(s)Δs

≤
∏

t3<θk<t

b∗k

⎡
⎣w(t3)−

t∫
t3

∏
t3<θk<s

1

b∗k
q(s)

⎤
⎦Δs

→ −∞ as t → ∞

due to (H5), a contradiction to the fact that w(t) > 0 for t ∈ (θk, θk+1]T, k ∈ N.
This completes the proof of the theorem. �

��������� 3.2� Let all conditions of Lemma 2.1 hold. Assume that there exists
a positive integer k0 such that b∗k ≤ 1 for k ≥ k0. Furthermore, assume that

(H6)
∫∞
t0

q(s)Δs = ∞ hold, then every solution of (1) oscillates.

P r o o f. Without loss of generality, we assume that k0 = 1. Since b∗k ≤ 1, then
1
b∗
k
≥ 1. Therefore,

t∫
t0

∏
t0≤θk<s

1

b∗k
q(s)Δs ≥

t∫
t0

q(s)Δs.

Letting t → ∞ and in view of Theorem 3.1, we get that every solution of (1) is
oscillatory. This completes the proof. �

��������� 3.3� Let all conditions of Lemma 2.1 hold. Assume that there exists

a positive integer k0 and a positive constant α such that 1
b∗k

≥
(

θk+1

θk

)α

for k ≥ k0.

Furthermore, assume that
(H7)

∫∞
t0

sαq(s)Δs = ∞ hold, then every solution of (1) oscillates.
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P r o o f. Without loss of generality, we assume that k0 = 1. Now

t∫
t0

∏
t0<θk<s

1

b∗k
q(s)Δs =

n∑
i=1

∏
t0<θk<θi+1

1

b∗k

θi+1∫
θi

q(s)Δs

≥ 1

θα1

n∑
i=1

θαi+1

θi+1∫
θi

q(s)Δs

≥ 1

θα1

n∑
i=1

θi+1∫
θi

sαq(s)Δs

=
1

θα1

θn+1∫
θ1

sαq(s)Δs.

Letting t → ∞ and in view of Theorem 3.1, we get that every solution of (1) is
oscillatory. This completes the proof. �

Next, we present some new oscillation criteria for (1) by using an integral
averaging condition of the Kamenev type.

�
����
 3.4� Let all conditions of Lemma 2.1 hold and b∗k ≥ 1. Furthermore,
assume that
(H8) lim supk→∞

1
tm

∫ θk+1

t0
(t− s)mq(s)Δs = ∞,

then every solution of (1) oscillates.

P r o o f. Proceeding as in the proof of Theorem 3.1, we get

wΔ(t) ≤ −q(t), for t �= θk.

Multiplying (t − s)m to both side of the preceding inequality and integrating
from θk to θk+1, we get

θk+1∫
θk

(t− s)mwΔ(s) ds ≤ −
θk+1∫
θk

(t− s)mq(s)Δs.
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Indeed,

θk+1∫
θk

(t− s)mwΔ(s)Δs = (t− s)mu(s)|θk+1

θk
−
θk+1∫
θk

(
(t− s)m

)Δs
w(s)Δs

=

θk+1∫
θk

m(t− s)m−1w(s)Δs

+ (t− θk+1)
mw(θk+1)− (t− θk)

mw(θ+k ),

because (
(t− s)m

)Δs
= −m(t− s)m−1.

As a result,
θk+1∫
θk

(t− s)mwΔ(s)Δs ≥ −(t− θk)
mw(θ+k ).

Therefore,
θk+1∫
θk

(t− s)mq(s)Δs ≤ −
θk+1∫
θk

(t− s)mwΔ(s)Δs

≤ (t− θk)
mw(θ+k ) ≤ b∗k(t− θk)

mw(θk),

that is,

1

tm

θk+1∫
θk

(t− s)mq(s)Δs ≤ b∗k

(
t− θk

t

)m

w(θk).

and hence

lim sup
k→∞

1

tm

θk+1∫
θk

(t− s)mq(s)Δs < ∞,

is a contradiction to (A8) This completes the proof of the theorem. �

Remark 2� Finally, we remark that, using the same technique and the same
argument as above, one can obtain new oscillation criteria for the advanced
dynamic equation with impulse of the form

(E)

⎧⎪⎨
⎪⎩
[r(t)|uΔ(t)|γ−1uΔ(t)]Δ+f

(
t, u(t), u(t+ δ)

)
=0, t ∈ JT, t �= θk,

r(θ+k )|uΔ(θ+k )|γ−1uΔ(θ+k )=Ik
(
r(θk)|uΔ(θk)|γ−1uΔ(θk)

)
, k ∈ N,

u(t)=φ(t), !t0 − δ ≤ t ≤ t0.
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4. Examples

Example. Consider the impulsive system (T = R)⎧⎨
⎩

u′′(t) + (t+2)2

ln t u(t− 2) = 0, t > 2, t �= θk,

u′(θ+k ) =
(

k+2
k+1

)
u′(θk), k ∈ N,

(5)

where
γ = 1, r(t) = 1, δ = 2,

q(t) = (t+2)2

ln t ≥ 0, b∗k = bk = k+2
k+1 , θk = 3k,

θk+1 − θk = 3 > 2, k ∈ N, f(x) = x.

Then, from (H4)

∞∫
θj

1

r 1
γ (s)

∏
θj<θk<s

bγk ds =

∞∫
2

∏
2<θk<s

k + 2

k + 1
ds

=

θ1∫
2

∏
2<θk<s

k + 2

k + 1
ds +

θ2∫

θ+
1

∏
2<θk<s

k + 2

k + 1
ds +

θ3∫

θ+
2

∏
2<θk<s

k + 2

k + 1
ds+ · · ·

=
3

2
(θ1 − 2) +

3

2
× 4

3
(θ2 − θ1) +

3

2
× 4

3
× 5

4
(θ3 − θ2) + · · ·

=
3

2
× 1 + 2× 3 +

5

2
× 3 +

1

5
× 3 + · · ·

≥ 1 + 2 + 3 + · · · =
∞∑
i=1

i = ∞

and from (H6) we have

∞∫
2

∏
2<θk<s

1

b∗k
q(s) ds

=

⎡
⎢⎢⎣

θ1∫
2

∏
2<θk<s

+

θ2∫

θ+
1

∏
2<θk<s

+ · · · +
∞∫

θ+
k−1

∏
2<θk<s

⎤
⎥⎥⎦
(
k + 1

k + 2

)(
(s+ 2)2

ln s

)
ds → ∞.

By Theorem 3.1, (5) has an oscillatory solution. In the mean time,

u′′(t) +
(t+ 2)2

ln t
u(t− 2) = 0

has a nonoscillatory solution u(t) = ln (t+ 2).
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Example. Consider (T = Z)⎧⎨
⎩

Δ2u(t) + ( t
t+1 )u

2(t− 1) = 0, t > 1, t �= θk,

Δu(θ+k ) =
(

1
k−1

)
Δu(θk), k ∈ N, k > k0,

(6)

where

γ = 1, δ = 1, r(t) = 1, q(t) = t
t+1 ≥ 0, b∗k = bk = 1

k−1 ,

θk = 2k, θk+1 − θk = 2k > 1, k ∈ N, k > k0 = 1, f(x) = x2.

Clearly, (H4) is satisfied and from (H6) we obtain
∞∫
2

∏
2<θk<s

1

b∗k
q(s) ds

=

⎡
⎢⎢⎣

θ1∫
2

∏
2<θk<s

+

θ2∫

θ+
1

∏
2<θk<s

+ · · · +
∞∫

θ+
k−1

∏
2<θk<s

⎤
⎥⎥⎦ (k − 1)

(
s

s+ 1

)
ds → ∞.

All conditions of Theorem 3.4 are satisfied for (6) and hence (6) has an oscillatory
solution.
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