
�

�
�����������	 
��	�������

DOI: 10.1515/tmmp-2017-0007
Tatra Mt. Math. Publ. 68 (2017), 81–92

ON THE COEFFICIENTS OF MULTIPLE SERIES

WITH RESPECT TO VILENKIN SYSTEM

Valentin A. Skvortsov — Francesco Tulone

ABSTRACT. We give a sufficient condition for coefficients of double series
∑∑

n,m an,mχn,m with respect to Vilenkin system to be convergent to zero

when n+m → ∞. This result can be applied to the problem of recovering coef-
ficients of a Vilenkin series from its sum.

1. Introduction

It is easy to give an example showing that the rectangular convergence almost
everywhere of a double Walsh series

∞∑
n=0

∞∑
m=0

an,mwn(x)wm(y) (1.1)

does not imply in general that the coefficients an,m tend to zero when n+m→ ∞.
It suffices to take a non-trivial Walsh series

∑∞
n=0 anwn(x) convergent to zero

almost everywhere on [0, 1] (see [2] or [4]) and to put an,m = an for all m.

However, a simple sufficient condition to guarantee that the coefficients an,m
of (1.1) tend to zero when n+m→ ∞ was given in [5].

In this paper, we generalize the above theorem to the case of the Vilenkin
system (see [1]). Although we are proving the result for the two-dimensional
case, the same method can be used to obtain a similar result for any dimension.
We present also some application of this result to the problem of recovering
coefficients of a Vilenkin series from its sum (more details on this application
will be given in [10]).
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2. Preliminaries

Let P = {pj}∞j=0 (2.1)

be a fixed sequence of natural numbers with pj ≥ 2 for j = 0, 1, 2, . . . Set m0 = 1
and mk = p0 · p1 · . . . · pk−1.

For each x ∈ [0, 1) we consider its P-adic expansion

x =

∞∑
j=0

xj
mj+1

, 0 ≤ xj ≤ pj − 1. (2.2)

We denote by QP the set of all P-adic rational numbers, i.e., points of the
form t

mk
, 0 ≤ t ≤ mk. The elements of the set [0, 1) \ QP are called P-adic

irrational numbers in [0, 1].

We note that each x ∈ QP has two expansions, a finite one and an infinite
one. We agree to consider only the finite expansion for x ∈ QP . Then, to each
x ∈ [0, 1) there corresponds only one sequence of integers {xj}∞j=0, 0 ≤ xj ≤
pj − 1, given by (2.2).

We also consider P-adic expansions of integers n ≥ 0:

n =

s∑
j=0

αjmj−1 with 0 ≤ αj ≤ pj − 1. (2.3)

Now, for each n ≥ 0 with P-adic expansion (2.3), we define an nth function
χn of the so-called multiplicative Vilenkin system (see [1] and [2]) by putting

χn(x) := exp

⎛
⎝2πi

s∑
j=0

αj xj
pj

⎞
⎠, (2.4)

where numbers xj are given by (2.2). Note that when pj = 2 for all j, we obtain
the Walsh system.

We consider half-open P-adic intervals (or P-intervals)

I(k)r :=

[
r

mk
,
r + 1

mk

)
, 0 ≤ r ≤ mk − 1, (2.5)

where the number k = 0, 1, 2, . . . is called the rank of the interval. By I(k) we

denote an arbitrary interval of rank k and by I
(k)
x the intervals of rank k the

closures of which I
(k)

contain the point x. So, if x ∈ (0, 1), the notation I
(k)
x is

related to two intervals (2.5), and, for x = 0 or 1, to one.

We also assign the rank k to a number n and to a function χn if mk−1 ≤
n < mk (χ0 has rank 0). Note that functions χn of rank k are constant on the
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interval of the same rank and ∫
I(k−1)

χn dx = 0. (2.6)

We now define the double Vilenkin system on the square K = [0, 1) × [0, 1)
by χn,m(x, y) := χn(x)× χm(y). If the rank of the numbers n and m are equal
to k and l, respectively, we say that the pair (n,m) has rank (k, l), and so
has the function χn,m(x, y) and an interval I(k,l) := I(k)×I(l). The notation

I
(k,l)
(x,y) is referred to the interval I

(k)
x ×I(l)y of rank (k, l) the closure of which I

(k,l)

contains the point (x, y). Note that we shall use notation I
(k,l)
(x,y) also for points

(x, y) ∈ K \K. We denote by I the set of all two-dimensial P-intervals I(k,l).

Functions χn,m(x, y) of rank (k, l) are constant on two-dimensional P-intervals
of the same rank.

A double series in the Vilenkin system is defined by
∞∑

n,m=0

an,mχn,m(x, y) :=

∞∑
n=0

∞∑
m=0

an,mχn(x) · χm(y), (2.7)

where an,m are real or complex numbers. The rectangular partial sum Sr,s of
series (2.7) at a point (x, y) is

Sr,s(x, y) :=

r−1∑
n=0

s−1∑
m=0

an,mχn,m(x, y).

Note that if r ≤ mk and s ≤ ml, then the above partial sums are constant on each
intervals of rank (k, l). We say that the series (2.7) converges rectangularly to
a sum S(x, y) at a point (x, y), and we write limr,s→∞ Sr,s(x, y) = S(x, y) if

Sr,s(x, y) → S(x, y) as min{r, s} → ∞.

3. Main result

We give a sufficient condition for the coefficients an,m of the series (2.7) to tend
to zero when n +m → ∞. In what follows, we suppose that the sequence {pi}
is bounded by a number P ≥ 2.

������� 3.1� Suppose that a double series (2.7) with respect to Vilenkin system
is rectangularly convergent everywhere on a “cross”{

a× (0, 1)
} ∪ {

(0, 1)× b
}
,

where a and b are P-adic irrational points, except on a countable set E. Then,

lim
n+s→∞an,s = 0. (3.1)
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P r o o f. Assume that (3.1) does not hold. Then, for some C > 0 and some
sequence of indexes {ni, si}, with ni + si → ∞ when i→ ∞, the inequality

|ani,si | > C (3.2)

holds for all i. It follows from the hypothesis of the theorem that there exist
points of convergence of the series. This implies that limn,s→∞ an,sχn,s(x, y) = 0
at those points. Having in mind that |χn,s(x, y)| = 1, we get

lim
n,m→∞

an,m = 0. (3.3)

From this fact it follows that in (3.2) we can consider one of the index to be
bounded. Therefore, without loss of generality, we can assume that for a con-
stant s and for all ni, n1 < n2 < · · · < ni < · · · , the inequality

|ani,s| > C (3.4)

holds.

Let the terms of the sequence {ni}i in (3.4) be of ranks ki, respectively, and
the number s be of rank l. We can assume that k1 < k2 < · · · < ki < · · ·

For each i, we put til(y) =
∑ml−1

q=0 ani,qχq(y). Note that t
i
l is constant on each

P-interval of rank l, and according to (2.6),∫
I(l)

til+j(y) dy =

∫
I(l)

til(y) dy (3.5)

for any j ≥ 1. From condition (3.4) we get∣∣til(y)∣∣ > C (3.6)

on at least one interval I(l) of rank l. Indeed, if (3.6) does not hold, i.e., for all y
we have

|til(y)| =
∣∣∣∣∣
ml−1∑
q=0

ani,qχq(y)

∣∣∣∣∣ ≤ C,

then considering ani,q as Fourier coefficients of til , we obtain in particular for q=s,

|ani,s| =
∣∣∣∣∣∣

1∫
0

til(y)χs(y) dy

∣∣∣∣∣∣ ≤
1∫

0

|til(y)||χs(y)| dy ≤ max
y

|til(y)| ≤ C

getting a contradiction with (3.4). Taking a subsequence of {ki} if necessary,
we can suppose that the interval I(l) is the same for each i and we fix it for the
further discussion.
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For a fixed i, consider the sum

pil(x, y) = Sni+1,ml
(x, y)− Sni,ml

(x, y)

= χni
(x)

ml−1∑
q=0

ani,qχq(y)

= χni
(x)× til(y). (3.7)

From (3.6), it follows that there exists a double interval I(ki,l) = I
(ki)
a × I(l)

of rank (ki, l) which intersects a× (0, 1) and on which |pil(x, y)| > C. Denote the

value of pil on this interval by pil(I
(ki,l)) and the value of til on the interval I(l)

by til(I
(l)). Thus, ∣∣til(I(l))∣∣ = ∣∣pil(I(ki,l))

∣∣ > C.

The intervals I(ki,l) are embedded into each other as i increases and the inter-
val I(l) is their common projection onto the y-axis.

Now, we consider the sequence {til+j}j. We note that there exists a sequence

of nested P-intervals {Î l+j}j such that∣∣til+j+1

(
Î(l+j+1)

)∣∣ ≥ ∣∣til+j

(
Î(l+j)

)∣∣ > C, j = 0, 1, . . . (3.8)

Indeed, for j = 0 we put Î(l) = I l and suppose Î(l+j) has been chosen. We have

til+j+1(y) = til+j(y) +

ml+j+1−1∑
q=ml+j

ani,qχq(y).

From (2.6), we get ∫
̂I(l+j)

ml+j+1−1∑
q=ml+j

ani,qχq(y) dy = 0.

This easily implies that at least for one of the intervals I(l+j+1) ⊂ Î(l+j) which

we denote by Î(l+j+1), the inequality (3.8) holds.

We formulate the next step of the proof as a separate lemma.

����	 3.1� Under the assumption of Theorem 3.1 and under the above no-
tation, suppose that for the interval I(l), for the sequence {ni}i, and for the
corresponding sequence of ranks {ki}i, which are used in the definition of the
sequence {til}i, the inequality |til(I(l))| > C > 0 holds for all i = 1, 2, . . . Then,

for any B, 0 < B < C there exist two nonintersecting P-adic intervals Ĩ(l1) and

Î(l1), which are subintervals of I(l), with rank l1 > l, and a subsequence {nim}m
of {ni}i such that∣∣timl1 (

Ĩ(l1)
)∣∣ > B and

∣∣timl1 (
Î(l1)

)∣∣ > B for all im.
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P r o o f. Take ε = C−B
Pml

and according to (3.3), choose j0 ≥ 1 and i0 such that

|ani,q| < ε for all i > i0 and q ≥ ml+j0 . Then, for any such i and for any y we get

∣∣til+j0+1(y)− til+j0
(y)

∣∣ =
∣∣∣∣∣∣
ml+j0+1−1∑
q=ml+j0

ani,qχq(y)

∣∣∣∣∣∣
< ε(ml+j0+1 −ml+j0)

= ε(ml+j0 · pl+j0 −ml+j0)

≤ εPml+j0

=
(C −B)ml+j0

ml
. (3.9)

Now, suppose that for each j, 1 ≤ j ≤ j0 + 1, and for all intervals I(l+j) ⊂ I(l)

except one Î(l+j), chosen as in (3.8), we have
∣∣til+j(I

(l+j))
∣∣ ≤ B. Applying the

last inequality with j = j0 and having (3.5) in mind, we obtain the following
estimation

∣∣til+j0

(
Î(l+j0)

)∣∣ 1

ml+j0

=

∣∣∣∣
∫
t
̂I(l+j0)t

i
l+j0

(y) dy

∣∣∣∣
≥

∣∣∣∣∣∣
∫
I(l)

til+j0(y) dy

∣∣∣∣∣∣ −
∫

I(l)\̂I(l+j0)

|til+j0(y)| dy

−
∣∣∣∣∣∣
∫
I(l)

til(y) dy

∣∣∣∣∣∣ −
∫

I(l)\̂I(l)

|til+j0
(y)| dy

>
C

ml
− B

(
1

ml
− 1

ml+j0

)
.

So,
∣∣til+j0

(Î(l+j0))
∣∣>ml+j0

(C−B)

ml
+B. Since by assumption we have

∣∣til+j0+1(y)
∣∣≤B

for all y ∈ Î(l+j0) \ Î(l+j0+1), for the same y we get

∣∣til+j0+1(y)− til+j0
(y)

∣∣ ≥ ∣∣til+j0
(y)

∣∣− ∣∣til+j0+1(y)
∣∣

>
ml+j0(C −B)

ml
+B −B

=
ml+j0(C −B)

ml
.
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This contradicts (3.9). So, there exists an interval I(l+j) ⊂ I(l), I(l+j) 	= Î(l+j)

with j = j0 or j = j0+1 for which |til+j(I
(l+j))| > B. This interval together with

the interval Î(l+j) gives a pair Ĩ(l1) and Î(l1) we are looking for, with l1 = l+ j.

As the rank of chosen intervals is bounded by l+ j0 +1, we can take a subse-

quence {nim} of {ni} such that the pair Ĩ(l1) and Î(l1) is the same for all im > i0.
This proves the lemma. �

Proceeding with the proof of the theorem, we take a sequence C = C0 >
C1 > C2 > · · · > C

2 and applying Lemma 3.1 successively first for C = C0

and B = C1, then for C = C1 and B = C2 and so on, we double in each step
the intervals obtained in the previous step. In the qth inductive step we get 2q

disjoint intervals I(lq) of the rank lq > lq−1 > · · · > l1 > l and some sequence {iq}
so that niq is a subsequence of {ni} given by (3.4) for which

∣∣tiqlq (I(lq))∣∣ > Cq.

Now, we take an interval I(kiq ) for which a∈I(kiq ), where kiq is the rank of niq .
Then, for any q we have ∣∣∣piqlq (I(kiq ,lq)

)∣∣∣ > Cq >
C

2
. (3.10)

So, we get continuum of sequences of nested intervals {I(kiq ,lq)}. Hence, at least
one of these sequences has a common point (a, y0) /∈ E with y0 /∈ QP and at
this point, by assumption of the theorem, the series is convergent and so, for

the sequence pij defined by (3.7) we should have limq→∞ p
iq
lq
(a, y0) → 0. This

is in contradiction to (3.10). Therefore, the assumption (3.2) is false and the
theorem is proved. �

4. Application to the problem
of recovering the coefficients

Theorem 3.1 is essential for obtaining results on recovering the coefficients
of convergent double Vilenkin series by generalized Fourier formulas.

A standard method for solution to the problem of recovering the coefficients
in the case of many classical orthogonal series is based on reducing this problem
to the one of recovering a primitive from its derivative where the derivative is
defined with respect to a properly chosen derivation basis (see [6]). In the case
of Vilenkin series, a suitable basis is the basis formed by P-intervals.

Given a set function F : I → R, we define the upper and the lower P-derivative
at a point (x, y) as

DPF (x, y) := lim sup
min(k,l)→∞

F (I
(k,l)
x,y )

|I(k,l)x,y |
and DPF (x, y) := lim inf

min(k,l)→∞
F (I

(k,l)
x,y )

|I(k,l)x,y |
, (4.1)

respectively.
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It is clear that DPF (x, y) ≥ DPF (x, y). If DPF (x, y) = DPF (x, y), this com-
mon value is called P-derivative DPF (x, y). For a complex-valued set function
F = ReF + iImF, we define P-derivative at a point (x, y) as

DPF (x, y) := DPReF (x , y) +DP ImF (x , y).

The difficulties which should be overcome in solving the problem of recovering
a primitive from its derivative in the multidimensional case are related to the
fact that the primitive, we want to recover, is differentiable not everywhere
but outside some exceptional set which is not countable in a dimension greater
than one. We have to impose some continuity assumptions on the primitive at
points of exceptional sets to guarantee its uniqueness. It turns out that the
usual continuity with respect to the basis is not enough for this purpose and
we introduce a stronger notion of continuity, which we call local Saks continuity
with respect to the basis.


������� 4.1� We say that a P-interval function F is locally P-continuous
in the sense of Saks, or briefly PS-continuous, at a point (x, y) ∈ K if

lim
k+l→∞

F
(
I(k,l)x,y

)
= 0. (4.2)

In our case, the role of the exceptional set will be played by the set Z of points
of the unit interval K having at least one P-rational coordinate, i.e.,

Z :=
(
[0, 1)×QP

)⋃(
QP × [0, 1)

)
. (4.3)

Now, we introduce a Perron type integral which solves the problem of recover-
ing a primitive from its P-derivative which is defined only outside the set Z. It is
a generalization of the dyadic Perron type integral (PBS-integral) introduced
in [9]. Properties of this integral in more details will be studied in [10].


������� 4.2� Let f be a real point function defined at least on K \ Z.
An additive PS-continuous on K P-interval function M : I → R (resp., m) is
called a PS-major (resp., PS-minor) function of f if the lower (resp., the upper)
P-derivative satisfies the inequality

DPM (x, y) ≥ f(x, y) (resp. DPm(x, y) ≤ f(x, y)) (4.4)

for all (x, y) ∈ K \ Z.
Proof of the following lemma is the same as the proof of the corresponding

lemma in [9] for the dyadic case.

����	 4.1� LetM and m be a PS-major and a PS-minor function for a point-
-function f on K. Then, for each P-interval I we have M (I) ≥ m(I).
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The last lemma implies that for any function f we have

inf
M

{
M (K)

} ≥ sup
m

{
m(K)

}
where “inf” and “sup” are taken over all PS-major and PS-minor function of f,
respectively. This justifies the following definition.


������� 4.3� A point-function f : K → R, defined at least on K \Z, is said
to be PS-integrable on K if there exists at least one PS-major function and
at least one PS-minor function of f and

−∞ < inf
M

{
M (K)

}
= sup

m

{
m(K)

}
<∞,

where “inf” and “sup” are taken as above. The common value is called PS-in-
tegral of f on K and is denoted by (PS) ∫

K
f.

In the same way, we can define PS-integral on any P-interval I.

Directly from the definitions we get the following result which shows that the
PS-integral solves the problem of recovering the primitive from its P-derivative
in the form we need.

������� 4.1� If an additive PS-continuous P-interval function F is P-differ-
entiable with DPF (x, y) = f(x, y) everywhere on K \ Z, then the function f is
PS-integrable on K and F is its indefinite PS-integral.

In a natural way, the definition of the PS-integral is extended to the case of
complex-valued functions.


������� 4.4� A point-function f : K → C, defined at least on K \Z, is said
to be PS-integrable on K if functions Ref and Imf are integrable. In this case,
the value of PS-integral is defined as (PS) ∫

K
f := (PS) ∫

K
Ref +i(PS)

∫
K
Imf .

To connect the problem of recovering a primitive with the problem of recover-
ing coefficients of the series (2.7), we introduce the following P-interval function.
For each P-interval of rank (k, l) we define

ψ(I(k,l)) :=

∫
I(k,l)

Smk,ml
(x, y) dx dy.

It is easy to check that ψ is an additive function on algebra generated by I.
In P-adic analysis, the function ψ is referred to as the quasi-measure generated
by the series (see [4]). Since the sum Smk,ml

is constant on each I(k,l), we get

Smk,ml
(x, y) =

1

|I(k,l)|
∫

I(k,l)

Smk,ml
(x, y) dx dy =

ψ(I(k,l))

|I(k,l)| (4.5)

for any point (x, y) ∈ intI(k,l).
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In fact, any additive P-interval function ψ defines a Vilenkin series for which
it is the quasi-measure generated by it and (4.5) holds. So, we have one-to-one
correspondence between the family of additive P-interval functions and the fam-
ily of Vilenkin series.

The equality (4.5) obviously gives a relation between P-differentiability of ψ
at (x, y) and convergence of the series. In particular, at least at the points (x, y) ∈
K \ Z, we get

lim
k,l→∞

Smk,ml
(x, y) = DPψ(x, y), (4.6)

and therefore, the convergence of the series (2.7) at such points to a sum f(x, y)
implies P-differentiability of the function ψ at (x, y) with f(x, y) being the value
of P-derivative.

The next lemma demonstrates the importance of Theorem 3.1 for an appli-
cation of the PS-integral to the problem of recovering the coefficients as it gives
the required continuity properties of the quasi-measure.

����	 4.2� If the coefficients of series (2.7) satisfy condition (3.1), then at
each point (x, y) ∈ K the quasi-measure ψ is PS-continuous, i.e., (4.2) holds
everywhere on K.

P r o o f. Having in mind that for all i < mk and j < ml functions χi,j are

constant on each interval I
(k,l)
(x,y) of rank (k, l), we have for a fixed (x, y) (recall

that (x, y) can belong to closure of I
(k,l)
(x,y))

|ψ(I(k,l)(x,y))| ≤
∫

I
(k,l)

(x,y)

|Smk,ml
(t, s)| dt ds

≤
mk−1,ml−1∑

i,j=0

∫
I
(k,l)

(x,y)

|ai,jχi,j(t, s)| dt ds

≤
∑mk−1,ml−1

i,j=0 |ai,j |
mkml

.

But the right-hand side expression is the arithmetic mean of the modulus of the
coefficients ai,j and it tends to zero together with coefficients when i+j→∞. �

Note that, in fact, we have proved uniform PS-continuity of ψ. We also note
that the above statement is not true even under assumption of convergence
everywhere on K of Vilenkin series if the convergence is considered with respect
to regular rectangles, for example, with respect to cubes (see [3]).
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The following statement is essential for establishing that a given Vilenkin
series is the Fourier series in the sense of some general integral (see, for exam-
ple, [6]; a proof in the one-dimensional version can be found in [2, Th. 3.1.8]).

���������� 4.1� Let some integration process A be given which produces an
integral additive on I. Assume a series of the form (2.7) is given. Let a P-in-
terval function ψ be the quasi-measure generated by this series and (4.5) holds.
Then this series is the Fourier series of an A-integrable function f if and only
if ψ(I) = (A)

∫
I
f for any P-interval I.

In view of (4.6) and the above proposition, in order to solve the coeffi-
cient problem it suffices to show that the quasi-measure ψ generated by the
Vilenkin series is the indefinite PS-integral of its P-derivative which exists at
least on K \ Z.

Finally, using all the above results, we get

������� 4.2� If a two-dimensional series (2.7) is rectangular convergent to
a sum f everywhere in K \Z, then f is PS-integrable on K and the coefficients
of the series are PS-Fourier-Vilenkin coefficients of f .

P r o o f. Take any (a, b) ∈ K \ Z. Then intersection of the cross
{
a × [0, 1]

} ∩{
[0, 1]×b} with Z is countable, and by Theorem 3.1, condition (3.1) holds. Then,

by Lemma 4.2, the quasi-measure ψ generated by the series (2.7) is PS-conti-
nuous everywhere on K. Moreover, the equality (4.6) implies

lim
k,l→∞

Smk,ml
(x) = DPψ(x, y) = f(x, y)

everywhere on K \ Z. Then, application of Proposition 4.1 and Theorem 4.1 to
the real and imaginary parts of functions ψ and f completes the proof. �
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