
Int. J. Appl. Math. Comput. Sci., 2020, Vol. 30, No. 4, 717–731
DOI: 10.34768/amcs-2020-0053

ASA–GRAPHS FOR EFFICIENT DATA REPRESENTATION AND PROCESSING

ADRIAN HORZYK a,∗, DANIEL BULANDA a, JANUSZ A. STARZYK b,c

aDepartment of Biocybernetics and Biomedical Engineering
AGH University of Science and Technology
al. Mickiewicza 30, 30-059 Kraków, Poland

e-mail: horzyk@agh.edu.pl,daniel@bulanda.net

bFaculty of Applied Computer Science
University of Information Technology and Management in Rzeszów

ul. Sucharskiego 2, 35-225 Rzeszów, Poland

cSchool of Electrical Engineering and Computer Science
Ohio University

Athens, OH 45701, USA
e-mail: starzykj@gmail.com

Fast discovering of various relationships in data is an important feature of modern data mining, cognitive, knowledge-based,
and explainable AI systems, including deep neural networks. The ability to represent a rich set of relationships between
stored data and objects is essential for fast inferences, finding associations, representing knowledge, and extracting useful
patterns or other pieces of information. This paper introduces self-balancing, aggregating, and sorting ASA-graphs for ef-
ficient data representation in various data structures, databases, and data mining systems. These graphs are smaller and use
more efficient algorithms for searching, inserting, and removing data than the most commonly used self-balancing trees.
ASA-graphs also automatically aggregate and count all duplicates of values and represent them by the same nodes, connect-
ing them in order, and simultaneously providing very fast data access based on a binary search tree approach. The proposed
ASA-graph structure combines the advantages of sorted lists, binary search trees, B-trees, and B+trees, eliminating their
weaknesses. Our experiments proved that the ASA-graphs outperform many commonly used self-balancing trees.

Keywords: self-balancing trees, self-sorting trees, self-aggregating data structures, associative structures, graphs, data
access efficiency, representation of relationships.

1. Introduction

With the rapidly growing amount of data, we need to
search for new algorithms and data structures that will
allow for efficient storage and fast data processing. New
data structures should also represent frequently used data
relationships to avoid looking for these relationships in
many nested loops. Known relationships allow us to find
related data and achieve other search objectives quickly.

For data mining and knowledge discovery, we
need efficient structures to find not only data and their
frequent patterns, but also their relationships quickly.
The most commonly used structures are arrays, matrices

∗Corresponding author

(n-dimensional arrays), lists, queues, stacks, heaps,
hashing structures, trees, and graphs of various kinds
(Cormen et al., 2009). Every structure has its strengths
and weaknesses, which determine its use in various
applications according to the most frequent operations
that will be processed using them. Data structures are
typically efficient only for a subset of operations, e.g.,
search, while for the other operations, e.g., insert or
remove, are less efficient depending on the stored data.
A satisfying compromise is desirable (Baran, 2018).

Another important factor that differentiates various
data structures is the number and kind of represented
relationships between stored data. For example, when
data are sorted, the subsequent array fields or list

© 2020 A. Horzyk et al.
This is an open access article distributed under
the Creative Commons Attribution-NonCommercial-NoDerivs license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).

mailto:horzyk@agh.edu.pl, daniel@bulanda.net
mailto:starzykj@gmail.com

718 A. Horzyk et al.

nodes define the neighborhood relationship of the stored
values. Sorted data speed up the calculation of sums,
averages, medians, minima, maxima, count up or remove
duplicates, filter data according to some conditions
or perform data mining computations, searching for
similarities, differences, clusters, frequent patterns,
associative rules, etc. In all these operations, we need
to have fast access to data and relationships (Lewicki
and Pancerz, 2020). Today, we have many complex
neural network structures which we want to work faster
to solve the problems of our civilisation (Wieczorek et
al., 2020). On the other hand, we have different complex
neural network solutions which can work faster when
appropriately associating sensors with neural networks
(Woźniak et al., 2020).

This paper introduces a new type of aggregating
and sorting associative graph structures (ASA-graphs).
ASA-graphs store data in sorted order, allowing for very
fast data access, search, insertion, removal, updating, and
representing information about a number of duplicates,
aggregating their representations and stable sorting of
their dependencies, making often used relationships
instantly accessible. They also improve the performance
and storage capacity of commonly used B-trees (Bayer
and McCreight, 1972) in datasets with many duplicated
values. This structure not only represents data consistently
(automatically aggregating and counting duplicates) but
also carries important relationships between stored data
like order and counts of duplicates, which accelerates
filtering and calculations of sums, averages, and
medians. Hence, we can use this associative structure
to represent frequent data patterns together with frequent
relationship patterns, which might be an important goal of
various knowledge-based search and relationship mining
algorithms.

The ASA-graphs link stored values in sorted order
similarly to B+trees (Comer, 1979; Cormen et al., 2009;
Wu et al., 2010) that are commonly used as the backbone
data structure of database management systems (DBMSs),
but unlike B+trees the proposed structure stores data in
all tree nodes spanned over this graph, not wasting either
memory for the guidepost nodes or time for targeting
values stored only in leaves of B+trees. The ASA-graph
is a combination of a sorted list and a self-balancing
search tree. Therefore, all operations take at most the
logarithmic time as a function of the number of unique
(not all) keys in the collection. When the collection
contains many duplicates, the computational complexity
of the operations on ASA-graphs is independent of the
number of stored data and can be processed in constant
time, competing with the fastest self-balancing trees and
hash maps. The comparisons of ASA-graphs with these
structures are presented in this paper.

The contribution of this paper is the presentation
of a new graph structure that combines, expands, and

improves the other self-balancing tree structures, allows
for the efficient representation of the cardinality of
duplicates, which can accelerate many operations. The
unique combination of the sorted list woven into the tree
structure creates the graph structure whose elements can
be searched in different ways, taking advantage of both
a sorted order of elements in the list and logarithmic
search using the balanced search tree. This combination
also enabled us to develop new, more efficient insert
and remove operations using both the search tree and
sorted list structures. The aggregated representation
of identical values (duplicates) in the collection allows
for the quicker association of objects defined by the
same keys in databases, and the connections to neighbor
elements expand this quick search also to the objects
defined by similar (not only the same) values.

2. Data tree structures for efficient search

In computer science, we use various data structures like
hash maps (Mehta and Sahni, 2004; Sedgewick and
Wayne, 2011), binary search trees (Cormen et al., 2009;
Hibbard, 1962), Red-Black-trees (Chen and Schott, 1996;
Guibas and Sedgewick, 1978; Sedgewick and Wayne,
2011; Sharma et al., 2018), AVL-trees (Adel’son-Vel’skii
and Landis, 1962), B-trees (Bayer and McCreight, 1972;
Graefe, 2011), B+trees (Comer, 1979; Cormen et al.,
2009; Wu et al., 2010), etc., which accelerate search
and other operations. There are many variants of
B-trees: B*-trees (Sagiv, 1986), B**-trees (Toptsis,
1993), UB-trees (Comer, 1979), BUB-trees (Fenk, 2002),
R-trees (Guttman, 1984), Bx-trees (Jensen et al., 2004),
(Dan, 2007), Tango-trees (Demaine et al., 2007), and
WAVL-trees (Haeupler et al., 2015).

Binary search trees (BSTs) (Cormen et al., 2009;
Hibbard, 1962) are widely used in practice. This data
structure is a rooted binary tree wherein each node stores a
key (and optionally a value). Apart from the leaves, every
node has two pointers to the left and right subtrees. The
key in a node must be greater than or equal to any key
stored in the left subtree, and less than or equal to any
key stored in the right subtree. One of the reasons for
the popularity of this structure is simplicity. Because BST
are not self-balancing, in typical situations, the expected
height of the tree is about

√
n (where n is a number

of keys), which grows much faster than logn. In the
worst-case, the time complexity of the search operation
is of O(n) because a tree can degenerate and become a
list.

Adel’son-Vel’skii and Landis (1962) invented
self-balancing binary search tree (AVL-tree) that achieve
the O(log n) computational complexity for insert, search,
and remove. The most significant constraint of this tree
is that the heights of the two-child subtrees of any node
differ by at most one – if not, rebalancing is done to

ASA-graphs for efficient data representation and processing 719

restore the balanced structure. Rebalancing is performed
using one or more subtree rotations.

A popular tree-like structure is the Red-Black-tree
(RBT) invented by Guibas and Sedgewick (1978), who
derived the RBT from the symmetric binary B-tree, also
known as 2-3-4 tree. The RBT is a self-balancing binary
search tree with one extra bit per node interpreted as the
red or black color. The color bit helps to ensure that
the tree remains balanced during deletions or insertions
(Sedgewick and Wayne, 2011). The balancing of the tree
is not perfect but still guarantees worst-case complexity
O(log n) for insertion, searching, and deletion. The RBT
is similar to a B-tree of order 4 (Knuth’s definition of
order: the maximum number of children (Knuth, 1998)).
Each node stores at most 3 keys, only one key-node
marked as black, with an optional red key-nodes before
and after the black one.

Another popular solution is a hash map (also called a
hash table) (cf. Mehta and Sahni, 2004; Sedgewick and
Wayne, 2011) that implements an associative array of
abstract data types, mapping keys to values. Hash maps
use hash functions to compute an index (hash code) into
an array of buckets (slots), where the desired value can be
found in constant time if the number of values in buckets
is not too big.

B-trees are the simplest self-balancing binary search
trees invented in Boeing Research Labs introduced by
Bayer and McCreight (1972). They are a generalization
of binary search trees with nodes that can have more than
two children. The order of this tree, according to the
Knuth definition (Knuth, 1998), is defined as the maximal
number of node children as used in this paper. Another
popular measure of the capacity of B-tree nodes is the
CLRS degree (often denoted as t) (Cormen et al., 2009)
where the possible number of node’s children k, except
the root, is in the range of t and 2t, i.e., t ≤ k ≤ 2t.

One of the first mentions of B+trees came from
Comer (1979). B+trees modify a B-tree structure to
store all keys in leaf nodes only and order these keys,
adding extra connections, and thus removing one of the
disadvantages of B-trees. Such an upgraded structure
is commonly used in file systems stored on disks and
databases. Because all the keys are in leaves, internal
nodes are used to navigate through this structure only.
It simplifies disk operations but produces additional
signpost nodes (navigating the search algorithm to the
leaves), and therefore these trees grow faster than B-trees,
and the search always requires to go through all nodes on
the path from the root to a leaf. Every leaf node stores a
pointer to the next leaf if it exists so that we can move over
the leaves in sorted order. A big advantage over B-trees is
that B+trees store the information about the relationship
of order between data. These structures guarantee
logarithmic time complexity for typical operations at the
cost of more memory usage and longer time of search and

insertion on average.
WAVL-trees, invented by Haeupler et al. (2015), are

designed to combine some of the best properties of both
AVL-trees and Red-Black-trees. Their height is at most
1.44log2 n and only a constant number of tree rotations is
used to balance themselves after some insert or remove
operations. They can be used in various applications
instead of Red-Black-Trees or AVL-Trees.

AVL-trees are very popular, especially for
search-intensive tasks, because they are more strictly
balanced (Pfaff, 2004). Applications of Red-Black-trees
are varied, including Completely Fair Scheduler in
Linux kernel or Java HashMap, as a better alternative
to LinkedList to store different elements with colliding
hash codes. In the work of Sharma et al. (2018), the
Red-Black-trees make routing in partitioned networks
feasible. The distributed priority tree-based routing
protocol (DPTR) utilizes features provided by the trees
to manage communication between nodes in different
networks. Hash maps are widely used in many solutions,
particularly for associative arrays, database indexing,
caches, and datasets.

B-trees are used in column-oriented storage
formats for query processing in relational databases and
warehouses (Graefe, 2011). B-trees can also be used in
data warehouses (Sun et al., 2016), where a B-tree-based
tool enhances metadata management to overcome a
bottleneck in the performance of metadata operations.
This tool creates a B-tree based overlay network,
supplying inefficient lookup operations. Shen et al.
(2018) used the Locally-Sensitive B-tree (LSB-tree) for
anomaly saliency determination by providing information
about the nearest neighbors in the LSB-forest. Kim
et al. (2018) adapted B-trees called cache-line friendly
B-trees (clfB-trees) to achieve better performance than
B-trees. B+trees find use in file systems and databases
(Wu et al., 2010). Cloud computing is an area where
B-trees and B+trees are also deployed successfully. The
feature described by Fan et al. (2018) is a perfect example
of the topical Internet of Things (IoT) adaptation in the
automotive industry where the designer settled three main
goals of his project: user privacy, security, and efficiency.

Real data collections usually contain many
duplicates that are not aggregated and counted, e.g.,
in B-trees or original B+trees since they assume storing
the unique keys. To prove that duplicates are common
in many datasets used in data mining related tasks, we
downloaded 85 randomly selected datasets from UCI ML
Repository and Kaggle containing from 57 to 2299651
records to obtain some statistics about duplicates. The
mean value of the number of duplicates for the tested
datasets was 71%, with the number of duplicates for each
dataset varying from 7% to 99%. This experiment has
shown that duplicates are very common in data from
various domains. To benefit from the aggregations of

720 A. Horzyk et al.

duplicates in data science, we introduce a special data
structure in the following section.

3. ASA-graphs

In this paper, we propose aggregative sorting associative
graphs (ASA-graphs), cf. Fig. 1. They are a combination
of a sorted list of elements and a third-order self-balancing
search tree (similar to a B-tree) spanned over all stored
elements in this list. Every element stored in these graphs
can be reached using at least two paths, namely, using
the connections between elements of the bidirectionally
sorted list or the connections between nodes storing
elements of the spanned self-balancing tree.

Definition 1. (ASA-graph element) Each element of
ASA-graphs stores (Fig. 1):

• a unique key of the represented data collection,

• the number of this key duplicates in the collection,

• two pointers or indices to the previous and next
elements in the sorted order,

• the list of indices or pointers to the objects sharing
this key.

Elements of ASA graphs are combined into a sorted
list and self-balancing search tree, defined next.

Definition 2. (ASA-graph bidirectional sorted list) A
bidirectional sorted list used in ASA-graphs is a classic
sorted list storing elements which contain unique keys and
two pointers or indices to the previous and next elements
in the sorted order (Fig. 1).

To complete the definition of ASA-graphs, we must
define its self-balancing search tree storing all elements of
the ASA-graph in its nodes.

Definition 3. (ASA-graph self-balancing search tree)
A self-balancing search tree of the 3rd order of the
ASA-graph satisfies the following properties (Fig. 1):

1. Every node contains one or two elements.

2. Every non-leaf node stores one child more than the
number of the stored elements.

3. All leaves always are in the last level of this tree.

4. Keys stored in the leftmost subtree of each node are
smaller the key(s) stored in this node.

5. Keys stored in the rightmost subtree of each node are
bigger the key(s) stored in this node.

6. Keys stored in the middle subtree of the node, if this
subtree exists, are larger than the smallest key and
smaller than the largest key stored in this node.

Based on the previous three definitions, we can
define ASA-graphs.

Definition 4. (ASA-graph) An ASA-graph is a hybrid
structure consisting of special nodes storing all elements
representing unique keys of the collection (Definition 1)
that are connected in sorted order using bidirectional
connections of the sorted list (Definition 2) and also
connected and accessible through the connections of the
self-balancing search tree (Definition 3) spanned over all
these elements (Fig. 1).

There are alternative paths between elements stored
in ASA-graphs because both the connections of a
bidirectional list and the connections of the self-balancing
search tree can be used to move between every two
elements. ASA-graphs are a hybrid graph structure
because it encompasses two kinds of connections between
stored elements (graph nodes), which are connected
directly using bidirectional sorting connections and extra,
higher-level node-connections between ASA-graph nodes
containing one or two elements (Fig. 1).

3.1. ASA-graph properties. ASA-graphs aggregate
and count duplicates, sort them bidirectionally, and
accelerate the search, insert, remove, and other operations
thanks to the use of this tree that stores elements in a
similar way to the keys stored by self-balancing B-trees.
Unlike B+trees, the spanned trees of the ASA-graphs do
not use extra signpost nodes. They are usually smaller
and faster than B-trees and B+trees thanks to the built-in
aggregating and counting mechanisms of duplicates,
which substantially reduce the size and height of such
spanned trees in comparison with B-trees, B+trees, and
other similarly used trees.

The ASA-graphs allow for searching for the keys
starting from the root and going along the edges,
benefiting from the logarithmic search time of the number
of all unique keys stored in this tree, or moving along the
sorted collection of elements using additional connections
between elements. This design ensures the efficiency of
various operations. ASA-graphs are associative because
they associate neighboring keys, aggregate and count
duplicates, and connect keys to similar objects sharing
these keys. Associative means related to something
with the defined strength of the relationship usually
expressed by the connection weights between graph
nodes that define related elements. Relationships may
be of various types, e.g., one-to-one, one-to-many,
or many-to-many. Associations can be of various
kinds and have varying strengths as introduced by
Horzyk (2013), e.g., associations come from similarities,
sequences, proximity, inversion, or inclusion. The
more associations between data and objects we store,
the more pieces of information are directly accessible
in the data structure, neural network, or database.

ASA-graphs for efficient data representation and processing 721

list of indices
or pointers

sorted list
element

counter
key

one-element node root

node

branch
4
6

1
4

6
2

8
1

0
2

2
5

3
2

5
3

7
1

9
2

leaf

sorting connection two-element node
links to objects connection to

the previous
element

connection
theto next

element

6
2

8
1

2
5

3
2

connection to parent

connections to child nodes

connection
to next

element
the

connection to
the previous

element

connection between
subsequent elements

list of indices or pointers
to objects sharing

the same key

element storing a key,
number of duplicates and

connections to the predecessor
and successor and objects

8
1

predecessor successor

leaf

node

connection to parent

Fig. 1. ASA-graph structure consisting of nodes, branches, elements, keys, counters, connections, and links, combining a sorted list
with a self-balancing search tree spanned over all elements.

In databases, where objects (entities) are defined by
several attributes, every attribute can be represented by
such an ASA-graph, accelerating various operations and
indexation. ASA-graphs have been designed to support
the other associative structures and neural networks like
AGDS (Horzyk, 2018), APNN (Horzyk and Starzyk,
2018), DASNG (Horzyk, 2017), ANAKG (Horzyk,
2015), and associative semantic memories (Horzyk et al.,
2017) to accelerate various search, data mining, and
knowledge exploration operations.

Assuming that h is the height of the spanning tree,
where h = 0 for the root of the spanning tree, ASA-graphs
have the following properties:

1. The minimal number of unique elements in the graph
nmin equals 2h.

2. The maximal number of unique elements in the graph
nmax equals 3h − 1.

In the search, insert, remove, and the other operations
on the keys, we use both a sorted list of elements and a
self-balancing search tree structure (called a tree in short
in the following descriptions). The algorithms of these
operations are presented in the subsections that follow.

3.2. Algorithm 1: Search operation in ASA-graphs.

Step 1. Start from the root of the tree.

Step 2. Check if the current node stores the searched key.
If so, return this element and finish this operation.

Step 3. If the current node is a leaf, return no element and
finish this operation.

Step 4. If the searched key is smaller than the key
of the leftmost element, go to the leftmost child;

Algorithm 1. ASA-graph search.

Require: r, k {r, root of tree; k, key sought}
1: n = r {n, current node}
2: while true do
3: if contains(r, k) then
4: return el {el, element storing key k}
5: else if is leaf (n) then
6: return null
7: else if k < leftmost key(n) then
8: n = leftmost child(n)
9: else if k > rightmost key(n) then

10: n = rightmost child(n)
11: else
12: n = middle child(n)
13: end if
14: end while

otherwise, if the searched key is larger than the key
of the rightmost element, go to the rightmost child;
otherwise, go to the middle child node.

Step 5. Go to Step 2.

When searching for the previous or the next key
in order, only ASA-graphs, B+trees, and bidirectionally
sorted lists allow for quick, constant complexity access
to it, while B-trees, AVL-trees, BST-trees and Wavl-trees
have at least logarithmic complexity because it is
necessary to go along the edges of these trees. Searching
for such neighbor values in hash maps is also difficult
because neighbor values are not directly or indirectly
pointed.

3.3. Algorithm 2: Insert operation in ASA-graphs.

Step 1. Start from the root of the tree.

722 A. Horzyk et al.

4
2

6
1

5
3

8
1

9
2

1
3

2
2

3

2
2

2
2

2
2

2
2

(c)

(d)

(b)

(a)

Fig. 2. ASA-graph insert operation of a key that requires splitting the overfilled nodes.

Step 2. Check if the current node already stores the
element with the same key as the inserted one. If
so, increase the element’s key counter, add the value
to the list of values associated with the key, and finish
this operation.

Step 3. If the current node is not a leaf, go to one of the
children by the following rules: If the inserted key
is smaller than the key of the leftmost element, go
to the leftmost child; otherwise, if the inserted key
is larger than the key of the rightmost element, go to
the rightmost child; otherwise, go to the middle child
node. Go to Step 2.

Step 4. Insert a new element in sorted order to this
leaf, initialize its counter to one (Fig. 2(a)). Set
its previous and next element pointers accordingly
to the elements between which it has been
inserted, and update the previous and next element
pointers of those elements to point out this new
element, updating the bidirectional list of elements
accordingly.

Step 5. If this node contains at most two elements, finish
this operation.

Step 6. Split the overfilled node (containing more than 2
elements) in the following way (Fig. 2):

(a) Create a new node and the right element
together with two rightmost children (when this
node is not a leaf) is passed to the newly created
node, and the left element together with two
leftmost children (when this node is not a leaf)
is kept in the split node (Fig. 2(b)).

(b) Forward the middle element of the overfilled
node to the parent if it exists (Fig. 2(b)). Insert
the middle element to the parent node at the
position of the child that forwarded the element
(Fig. 2(c)). Insert a new child connection
from this parent to the new node right after
the connection to this child that forwarded the
element (Fig. 2(c)). Next, go to the parent node
and go to Step 5.

Algorithm 2. ASA-graph insert.

Require: r, k, v {r, root of tree; k, key to insert; v, value
to insert}

1: n = r {n, current node}
2: while true do
3: if contains(r, k) then
4: increment counter(el) {el, element storing key

k}
5: add value(el, v)
6: return
7: else if is leaf (n) then
8: ne = create element(k, v)
9: connect neighboring elements(ne)

10: while elements count(n) <= 2 do
11: if has parent(n) then
12: split(n)
13: else
14: create parent(n)
15: split(n)
16: end if
17: n = parent(n)
18: end while
19: return
20: else if k < leftmost key(n) then
21: n = leftmost child(n)
22: else if k > rightmost key(n) then
23: n = rightmost child(n)
24: else
25: n = middle child(n)
26: end if
27: end while

(c) If the parent does not exist, create a new parent
node and connect it to the split node and the
new node, establishing them as its children
Fig. 2(d)). This new parent node becomes a
new root of the tree as well. Next, finish this
operation.

During the insert operation, the connections to
the previous and next elements are preserved, so the
bidirectional list included in the ASA-graph is always

ASA-graphs for efficient data representation and processing 723

up-to-date.

3.4. Algorithm 3: Remove operation in ASA-graphs.

1. SEARCH: Use the search operation to find an
element containing the key intended for removal. If
this key is not found, finish this operation with no
effect.

2. DECREMENT: If the counter of the element storing
the removed key is greater than one, decrement this
counter, remove the link to the bound object, and
finish the remove operation.

3. REMOVE: If the element storing the removed key is
in a leaf, remove this element from this leaf, switch
pointers from its predecessor and successor to point
themselves as direct neighbors. Next, if this leaf is
not empty, finish the remove operation (Fig. 3(A)),
otherwise go to Step 5 (Fig. 3(B)) to fill or remove
this empty leaf.

4. REPLACE: The element storing the removed key is a
non-leaf node that must be replaced by the previous
or next element stored in a leaf. If the previous or
next leaf contains more than one element, replace the
removed element in the non-leaf node by the element
from the leaf containing more than one element, and
finish the remove operation (Fig. 3(Ca)), otherwise
continue to choose the element of the leaf which
parent contains more elements. Next, replace
the removed element by the selected leaf element
(Fig. 3(Cb)), which produces the empty leaf that will
be filled or removed in Step 5.

5. FILL EMPTY LEAF: If one of the nearest siblings
of the empty leaf contains more than one element,
replace its ancestor element from the empty leaf side
by the closest element from this sibling and shift this
ancestor element to the empty node (Fig. 3(D)), and
finish the removal operation.

6. REMOVE LEAF: If the parent of the empty leaf
stores more than one element, move the nearest
parent element to the closest sibling of the empty
leaf, remove the empty leaf (Fig. 3(E)), and finish
this operation.

7. COLLAPSE: When both the parent of the empty
leaf and the only sibling store only single elements,
move the element from this sibling to the parent and
remove both children of this parent (Fig. 3(F)).

8. REBALANCE: If one of the sibling nodes of the
reduced subtree root contains more than one element,
shift its closest element to the parent replacing the
closest element in it, create a new child and move

Algorithm 3. ASA-graph remove.

Require: r, k {r, root of tree; k, key to remove}
1: n = r {n, current node}
2: while true do
3: if contains(r, k) then
4: if counter(el) > 1 then
5: el {el, element storing key k}
6: decrement counter(el)
7: remove value(el)
8: return
9: else if is leaf (n) then

10: disconnect neighbours(el)
11: remove value(el)
12: if is not empty(n) then
13: return
14: else
15: balance empty leaf (n) {see Steps 5–9 and

Fig. 3 for details}
16: end if
17: else
18: rel = find candidate to replace(el)
19: replace empty element(el, rel)
20: if is not empty(node(rel)) then
21: return
22: else
23: balance empty leaf (node(rel)) {see Steps

5–9 and Fig. 3 for details}
24: end if
25: end if
26: else if is leaf (n) then
27: return
28: else if k < leftmost key(n) then
29: n = leftmost child(n)
30: else if k > rightmost key(n) then
31: n = rightmost child(n)
32: else
33: n = middle child(n)
34: end if
35: end while

down the replaced element from the parent to this
new child. Connect this new child to the reduced
subtree and switch the closest child of the sibling
to this new child as well (Fig. 3(G)) and finish this
operation.

9. REBALANCE: If all sibling nodes of the reduced
subtree root contain only one element, move
the parent element to the closest one-element
sibling of the reduced subtree root and switch this
reduced subtree root from its parent to this sibling.
(Fig. 3(H)). Next, finish this operation if the parent
node still contains one element. If not, in the parent
node of the empty node (if exists) swap the pointer to

724 A. Horzyk et al.

(A)1

X STOP
(B)1

X
EMPTY

LEAF

FILL OR REMOVE

EMPTY LEAF

(Cb)

FILL OR

REMOVE

EMPTY

LEAF

≈

1

X

R

≈

R

EMPTY

LEAF

≈ ≈≈

R
(Ca)

STOP

≈ ≈

1

X

R

≈

BA

B

A

EMPTY

LEAF

MOVE

(F)

A

B

EMPTY

LEAF

MOVE

REBALANCE

BA
OR

DB

CA

EMPTY

LEAF

MOVE STOP

D

C

BA

(Ea)

D

CB

EMPTY

LEAFA

MOVE MOVE
OR

D

C

BA A

B

DC

OR

STOP(Eb)

(Da)

EMPTY

LEAF

~

SHIFT

D

E

~

~
~ ~

OR

C

B

~

~
~~

SHIFT

A F

STOP

OR

B

~

~
~~

E

~

~
~ ~

~

C

~

DA F

EMPTY

LEAF
BA

F
SHIFT

E

(Db)

OR

EMPTY

LEAF

SHIFT

BA

FE

STOP

BE

FA

FA

BE STOP

B

ESA C S

ID

HG

F

(G)

B

CSA S

D

G

FE

B

CSA S

GD

FE

JOIN

SWITCH

S

DB

EA C S

IF

HG
SHARE A CHILD

TO REBUILD

(H)

Fig. 3. ASA-graph remove operation: removing the element from the leaf or non-leaf node (A)–(C), filling or collapsing the empty
leaf (D)–(F), rebalancing the tree to retrieve leaves to be at the last layer only (G)–(H).

the empty parent node with the pointer to the newly
merged node, remove the empty node and perform
rebalancing for the root of the reduced subtree by
going to Step 8 until the main root of the tree is not
achieved. If the main root is achieved, set the main
root pointer as the pointer to the newly merged node
and remove the empty old main root node and finish
this operation. If the parent node of the empty node
does not exist, set the newly merged node as the main
root of the tree, remove the empty node, and finish
this operation.

The insert and remove operations of ASA-graphs are
defined in such a way that the connections (represented
by the pointers or indices) to the elements representing
the neighbor keys are updated automatically in constant
time. Hence, the order of all keys in these graphs is always
guaranteed with a constant computational complexity
cost. This is possible thanks to the movement of pointers

to the next and previous elements inside the element
structure (Fig. 1), so no sorting operations on these graphs
are necessary. That is why we say that ASA-graphs are
self-sorting structures.

The remove operation is very challenging because it
requires to keep elements in order and rebalance the tree
spanned over the remaining elements.

3.5. Computational complexity of ASA-graphs.
Time computational complexities (called in short time
complexities) of the search, insert, and remove operations
in ASA-graphs are logarithmic of the number of unique
keys in the collection in the worst case. The features that
support the computational superiority of ASA graphs are
the following:

1. The height of the spanned tree of an ASA-graph is
always less than or equal to the height of a B-tree
or a B+tree constructed for the same data collection

ASA-graphs for efficient data representation and processing 725

Table 1. Comparison of the time complexities of operations.
Data Structure Search Insert Remove Min/Max Med/Avr/Sum

Hash map average O(1) O(1) O(1) O(N) O(N logN)
Hash map worst case O(N) O(N) O(N) O(N) O(N logN)

B-tree O(log N) O(log N) O(log N) O(log N) O(N)
B+tree * O(log N) O(log N) O(log N) O(log N) O(N)
RB-tree O(log N) O(log N) O(log N) O(log N) O(N)

AVL-tree O(log N) O(log N) O(log N) O(log N) O(N)
WAVL-tree O(log N) O(log N) O(log N) O(log N) O(N)

ASA-graph O(log ̂N) O(log ̂N) O(log ̂N) O(log ̂N) O(̂N)

̂N is the number of unique keys, thus ̂N ≤ N .
* The classic, non-aggregating version of the B+tree is used for the comparisons in the table.

because ASA-graphs aggregate the representation of
all duplicates while B-trees do not.

2. B+trees use extra sign-point nodes that are not used
in the trees of ASA-graphs. Therefore, the number of
steps along the edges of trees used in ASA-graphs is
always less than or equal to the number of such steps
in B+trees.

3. B+trees store keys only in leaves, so the search
operation must always go along the whole height
of these trees to perform most of the operations;
therefore, it is slower than similar operations in
ASA-graphs.

4. The greatest number of all insert and remove
operations in ASA-graphs are finished in insert step
6 and remove steps 8 and 9 without the rebalancing
operations because only counters are incremented or
decremented. Therefore, it is often faster than the
insert or remove algorithms of B-trees or B+trees of
the same order, where the aggregations and counting
are not used.

The time complexity of ASA-graphs depends on
the combined time efficiencies of sorted lists and
self-balanced search trees, taking into account that
duplicates are aggregated, so the efficiency does not
depend on the number of all stored keys but only on
the number of all unique keys. Therefore, the following
efficiencies are characteristic for ASA-graphs:

• Access to the neighbor keys takes constant time.

• Search for a given key takes logarithmic time of the
number of unique keys in the collection.

• Search for a minimum or maximum key takes
logarithmic time of the number of unique keys in the
collection.

• Insert a key with or without a rebalancing operation
takes logarithmic time of the number of unique keys
in the collection.

• Remove a key with or without a rebalancing
operation takes logarithmic time of the number of
unique keys in the collection.

• Computation of a sum, a product, an average, or a
median takes linear time of the number of unique
keys in the collection.

• Retrieving the number of duplicates of a given key
takes logarithmic time of the number of unique keys.

• Moving between objects (entities) defined by the
same or similar keys takes constant time.

Note that for the presented operations, the
logarithmic time of the number of unique keys (̂N)
in the collection can be constant from the point of view of
all keys (N) if the number of duplicates in the collection
is big. Finally, if we assume that the number of unique
keys (̂N) is much less (̂N � N) and independent of
the number of keys (N) in the collection, then the given
operations of ASA-graphs have constant computational
complexity and can be successfully compared with
specialized structures like hash maps, etc. Table 1
compares the computational complexities of all similarly
used structures.

3.6. Data mining examples. An ASA-graph stores
more relationships between data than any other data
structure discussed in this paper, without a significant loss
of performance for typical operations. It performs even
faster in some knowledge engineering-related tasks like
finding the means, medians, standard deviations, sums,
counts, frequent patterns, minima, maxima, similarity,
neighborhood, etc. Examples of such operations include
the following:

• Calculation of a sum, product, mean, standard
deviation, or median can be accelerated by the
bidirectional sorted list and duplicate aggregation,
and in the worst case is O(̂N).

726 A. Horzyk et al.

• Direct connections to neighbors result in instant
access to connected elements without in-order
searching as is typically performed for binary search
trees. This makes finding similarity or neighborhood
more efficient.

• ASA-graphs can accelerate frequent and rare patterns
finding as a part of more complex graph data
structures, like AGDS (Horzyk, 2018). The
aggregated elements are connected with object nodes
representing patterns, sequences, or other types
of relationships, also giving those object nodes
direct connections to similar or neighboring values
represented by the ASA-graph.

• These complex graphs can be used as the very
efficient data structure for the modified k-nearest
neighbor algorithm (Altman, 1992), utilizing direct
connections between neighboring elements for each
data dimension to propose and compute the distance
between nearest neighbors in an n-dimensional space
(Horzyk and Starzyk, 2019).

• ASA-graphs can also be very useful for clustering in
such algorithms as K-means or K-medians thanks to
very efficient mean and median calculation.

4. Experiments and efficiency comparisons

In our experiments, we focused on the real-time
efficiency comparisons between popular self-balancing
trees (natural competitors) and ASA-graphs. We also
compared them with other simpler but widely used data
structures like hash maps or binary search trees. The
computational complexity of operations on AVL-trees,
RBT, B-trees, and original B+trees depends on the
number of all keys inserted to these structures, while the
computational complexity of operations on ASA-graphs
depends on the number of unique keys that may be much
smaller than the number of all keys (Table 1). Therefore,
if data contain a sufficient number of duplicated keys, the
operations on ASA-graphs should be more efficient than
the same operations on the other structures.

On the other hand, if the number of duplicates
is low, then the operations can be a bit less efficient
because ASA-graphs are more complex and require
some additional operations on pointers and counters.
Therefore, the theoretical comparisons of complexities of
all mentioned structures are supplemented by the practical
experiments that show us the true level of efficiency for
each structure according to the size of the collection and
the number of duplicates in the collection.

The final time efficiency of all compared structures
very much depends on the way how they are implemented
and optimized. Therefore, we implemented all the
compared structures ourselves to be sure that all these

structures are optimized in the same way to get trustful
results of the comparisons.

Experiments presented in this section are set to
check and confirm the presented theoretical predictions
and the analysis of the computational complexities of
the self-balancing trees considered. The conducted
experiments measured real differences between most
frequent operations like insert, search, and remove
performed on the mentioned structures in the previous
sections. For benchmarks, we chose the detection of
IoT botnet attacks dataset from the UCI ML Repository
and the Electric Motor Temperature dataset from Kaggle
repository. The first dataset is a large collection (above
7 million of instances) of floating-point numbers divided
into many files and grouped in 115 features. We
used Philips benign, scan, and ack data files (Meidan
et al., 2018) to achieve a sufficient amount of records
and duplicates for each key. The test scenario includes
translating the dataset stored as CSV files into a tested
data structure. We chose one column for a selected dataset
with a given number of duplicates and treated it as a key.
The whole record is transformed into value represented
by this key. Because of imprecise floating-point numbers
representation in most computers, we converted each key
to an integer. Every row is represented as a string. To
achieve a representative distribution of duplicates among
keys, we merged benign, ack, and scan subsets from the
selected dataset into two working datasets.

The first tested dataset has 369 984 records
containing features that have the following numbers of
duplicates: 2%, 9%, 20%, 32%, 40%, 48%, 56%, 67%,
76%, 84%, and 93% respectively. The second tested
dataset has 266 363 records and features of 3%, 12%,
17%, 23%, 29%, 36%, 42%, 50%, 57%, 67%, 73%, 80%,
and 89% duplicates respectively.

The second dataset is a collection of 998 070
examples described by 13 numerical features. We
narrowed down this collection to 420 000 of examples
to obtain the desired number of duplicates and speed up
experiments. Columns which contain 2%, 11%, 24%,
41%, 67%, 79%, and 99% were selected and used as keys
in our experiments.

The implementation of the tested data structures
was developed in C++17 using the GCC 7.3.0 x64
compiler. Every test was performed ten times to ensure
that the standard deviation of all measurements is below
5%, and then we present the average results for all
tests. We used std :: multimap to test RBT because
the GCC 7.3.0 x64 compiler implements this interface
using RBT. Similarly, std :: unordered multimap is
implemented as a hash map in the GCC compiler, and this
optimized implementation was used in our tests. B-trees,
B+trees, AVL-trees, Wavl-trees, and ASA-graphs have
been implemented using best programming practices and
optimizations. We implemented B+trees with duplicates

ASA-graphs for efficient data representation and processing 727

(A)�INSERT (B)�SEARCH

(C)�REMOVE (D)�SEARCH:INSERT:REMOVE�=�80�:�10�:�10

0,5

0,75

1

1,25

1,5

1,75

2

2,25

2,5

2,75

3

0 10 20 30 40 50 60 70 80 90 100
0,4
0,65
0,9
1,15
1,4
1,65
1,9
2,15
2,4
2,65
2,9
3,15
3,4
3,65
3,9

0 10 20 30 40 50 60 70 80 90 100

0,3

0,55

0,8

1,05

1,3

1,55

1,8

2,05

2,3

2,55

2,8

0 10 20 30 40 50 60 70 80 90 100
0,7

0,95

1,2

1,45

1,7

1,95

2,2

2,45

2,7

2,95

3,2

3,45

3,7

0 10 20 30 40 50 60 70 80 90 100

B�tree/ASA�graph B+tree�/�ASA�graph Hash�map�/�ASA�graph Wavl�tree�/�ASA�graph AVL�tree�/�ASA�graph Red�black�tree�/�ASA�graph

Fig. 4. Comparison of time efficiency of search (a), insert (b), remove (c) operations, and the typical ratio of the search, insert, and
remove (d) operations on data. The thick black line is a reference time needed for the ASA-graph. Thus, in all results above,
the thick black lines indicate situations where ASA-graphs are faster than the other solutions. The x-axes present the number
of duplicates in the compared datasets. The y-axes represent the ratio of the execution time of the compared algorithm to the
execution time of the ASA-graph algorithm.

counting and aggregation, not to store duplicates in
separate nodes, which would require a large number of
recursive non-leaf nodes checking during removal.

4.1. Testing time efficiency of the search, insert, and
remove operations. The charts presented in Fig. 4 show
the ratios of the time used by all tested data structures
to the ASA-graphs as a function of the percentage of
the above-considered numbers of duplicates. When these
ratios are greater than 1.0, ASA-graphs achieve better
efficiency than the compared reference data structures.
The high efficiency of ASA-graphs is gained thanks to
the aggregation of duplicates (x-axes). The datasets with
no duplicates are very rare in real applications, so the
achieved efficiencies are representative for the most real
data. ASA-graphs perform faster insertion than hash maps
if the number of duplicates is greater than approximately
70% even though hash maps store data unordered. The
efficiency is slightly lower for the datasets with fewer

duplicates.
ASA-graphs are usually smaller than the compared

data structures, which affects the memory efficiency.
There is also no need to reorganize this structure every
time, as every duplicate only increases the counter, not
affecting nodes, edges, order of elements, and memory
usage. In our experiment, the memory was saved
in comparison with other structures when the dataset
contained a sufficient number of duplicates (about 70%).
The amount of saved memory is larger if the number of
duplicates is larger, and savings are greater if each stored
key occupies a larger chunk of memory (which depends
on its data type).

The next experiment compares the measured
performance of a search operation for all keys (Fig. 4(a)).
ASA-graphs outperform hash maps because of the
hashing collisions that often occur for large datasets.
B-trees look competitive in this test, but they were worse
in the insertion operation (Fig. 4(b)).

728 A. Horzyk et al.

For the removal operation, every value from the
previously constructed structures was removed in random
order (but the order was the same for every data structure
in each test case) until they became empty. All tests
proved (Fig. 4(c)) that ASA-graphs are faster than most
of the other structures, especially when the number of
duplicates is high. The main reason is that the remove
operation is much more complex and time-consuming
than any other basic operations on those trees. Another
reason is that ASA-graphs can finish this operation
almost immediately when removing duplicated keys,
decrementing the key counters only when they are greater
than one. Moreover, ASA-graphs optimize the removal
operation much better (thanks to the connections to
neighbor-key elements) than B-trees, which must perform
more complex operations. Only hash maps outperformed
ASA-graphs because of the simpler structure and the lack
of representation of relationships between data, resulting
in a faster removal without the cost of the rebalancing
operation.

Comparing the results of the search, insert, and
remove operations (Fig. 4(d)) together and assuming that
during the time the number of duplicates increases, we
can claim that ASA-graphs almost always outperform
efficiencies of all tested data structures except for the
situations when the data contain very few duplicates. In
these quite rare situations, the other structures are only
slightly better than ASA-graphs, so in total, the use of
ASA-graphs is still beneficial.

4.2. Testing typical data mining tasks. In typical
data mining tasks, we often measure properties of sorted
subsets of data. In the performed experiments, we
measured the time efficiency of calculation of medians,
means, and standard deviations for the numbers of
key duplicates between fifty and ninety-fifth percentile.
The results presented in Fig. 5 show that ASA-graphs
outperform tested data structures in the major part of all
test cases. Only B+trees achieved comparable results (in
finding means and standard deviations in the lower range
of the percentage of duplicated keys), and only after we
improved the original code by aggregating duplicates and
direct connections between leaves. However, the overall
performance of B+trees was still worse than ASA-graphs
due to the repetitions of keys in signposts which are
present in B+trees.

The results illustrated in Fig. 5 demonstrate a
strong advantage of the proposed ASA-graphs in several
useful arithmetic operations performed on the stored
data. Such operations are often used in data mining,
machine learning, and artificial intelligence, therefore,
their efficient performance is significant.

The comparisons showed that ASA-graphs and
B+trees are more efficient than B-trees in accessing
neighbor keys because they use bidirectional lists of

elements spanned over the nodes organized in these trees.
However, the B+trees access time of all objects by keys
is always logarithmic because all objects are stored only
in leaves, while for ASA-graphs and B-trees, the access
time is shorter because objects are directly accessible from
all nodes of these trees. B+trees duplicate many keys
to navigate through the structure, so they are the least
memory efficient.

ASA-graphs do not duplicate the representation of
any key, which can save memory when the stored
collection contains a lot of duplicates. However, the
memory efficiency is not a primary goal of the use of
these graphs, but the time efficiency of all operations and
the ability to sort keys and associate objects (entities)
defined by the same or similar keys. ASA-graphs
span bidirectional lists over all elements and nodes and
automatically move and update connections to neighbor
keys in constant time when elements are inserted or
removed, which is impossible in the commonly used
B-trees. Moreover, the aggregations of duplicates
can significantly decrease the number of rebalancing
operations when the first instance of the key is inserted,
or when the last instance of the key is removed. Thanks to
these aggregations, ASA-graphs are smaller than B-trees
and the other self-balancing trees for data collections
containing many duplicates, save memory, and accelerate
all operations. When the number of unique keys is much
smaller than the number of all keys, the time efficiency of
all operations is constant and independent of the number
of all keys. ASA-graphs can also support and accelerate
various filtering operations thanks to the aggregations of
the same keys and storing them in order. This order is
always preserved and updated in constant time during
every operation, so the sorting is very efficient, and all
keys are always available in sorted order.

5. Conclusion

This paper presented novel ASA-graphs and compared
them with the commonly used structures in databases
for indexing, optimizing disk operations, IoT, and
data mining applications. The experiments showed
that ASA-graphs are very efficient and provide extra
relationships unavailable in B-trees and many other data
structures like direct connections to the predecessors and
successors or the counts of duplicates. ASA-graphs are
usually faster than the other structures in the search,
insert, and remove operations and can accelerate various
data mining operations. The theoretical analysis of the
computational complexities and performed experiments
proved this hypothesis. In addition, ASA-graphs save
memory in comparison with B-trees and B+trees when
data contain many duplicates.

The performed experiments proved that commonly
used B-trees and B+trees might be beneficially replaced

ASA-graphs for efficient data representation and processing 729

���(A)�MEAN ����(B)�MEAN�AND�STANDARD�DEVIATION

���(C)�MEDIAN ����(D)�MEDIAN�IN�RANGE

B�tree/ASA�graph B+tree�/�ASA�graph Hash�map�/�ASA�graph Wavl�tree�/�ASA�graph AVL�tree�/�ASA�graph Red�black�tree�/�ASA�graph

0,1

1

10

100

1000

10000

0 10 20 30 40 50 60 70 80 90 100
0,1

1

10

100

1000

10000

0 10 20 30 40 50 60 70 80 90 100

0,1

1

10

100

1000

10000

0 10 20 30 40 50 60 70 80 90 100
0,1

1

10

100

1000

10000

0 10 20 30 40 50 60 70 80 90 100

Fig. 5. Comparison of time efficiency of calculation of means (a), mean and standard deviation in the range between the 50th and the
95th percentile of the tested sets (b), medians (c), and medians between the 50th and the 95th percentile of the tested sets (d),
where all results above the thick black lines indicate situations where the ASA-graphs are faster than the other solutions. The
x-axes present the number of duplicates in the compared datasets. The y-axes (in the logarithmic scale) represent the ratio of
the execution time of the compared algorithm to the execution time of the ASA-graph algorithm.

by ASA-graphs. This can substantially accelerate
complex operations in big data applications and data
mining systems where quick access to the elements,
selected or similar keys is needed. The proposed
ASA-graphs are not only memory and time-efficient
but create new, interesting opportunities in cognitive
and knowledge-based applications for fast searching for
frequent relationships and collocations between multiple
attributes and objects in big data collections.

In our experiments, there was no significant loss
of efficiency of ASA-graphs even if the data contained
a small number of duplicates or no duplicates at all,
so that they can replace other self-balancing trees
without risking degradation of performance regardless
of the data collection. However, all real-world datasets
used in our experiments showed that most of the data
collections contain a significant number of duplicated
values. Therefore, aggregating duplicates makes sense
and reduces the data structure size and memory usage.

The greater the reduction, the bigger collection. In
the future, we plan to use ASA-graphs to enhance big
data processing, data mining, knowledge representation,
cognitive and knowledge-based artificial intelligence
inferences, memories, and systems.

Acknowledgment

This work was supported by the AGH grant no.
16.16.120.773 and the National Science Centre of Poland
grant no. DEC2016/21/B/ST7/02220.

References
Adel’son-Vel’skii, G.M. and Landis, E.M. (1962). An algorithm

for organization of information, Doklady Akademii Nauk
146(2): 263–266.

Altman, N.S. (1992). An introduction to kernel and
nearest-neighbor nonparametric regression, The American
Statistician 46(3): 175–185.

730 A. Horzyk et al.

Baran, M. (2018). Closest paths in graph drawings under
an elastic metric, International Journal of Applied Math-
ematics and Computer Science 28(2): 387–397, DOI:
10.2478/amcs-2018-0029.

Bayer, R. and McCreight, E. (1972). Organization and
maintenance of large ordered indices, Acta Informatica
1(3): 173–1.

Chen, L. and Schott, R. (1996). Optimal operations on red-black
trees, International Journal of Foundations of Computer
Science 7(03): 227–239.

Comer, D. (1979). Ubiquitous B-tree, ACM Computing Surveys
11(2): 121–137.

Cormen, T.H., Leiserson, C.E., Rivest, R.L. and Stein, C. (2009).
Introduction to Algorithms, MIT Press, Cambridge, MA.

Dan, L. (2007). Indexing and Querying Moving Objects
Databases, PhD thesis, National University of Singapore,
Singapore.

Demaine, E.D., Harmon, D., Iacono, J. and Pǎtraşcu, M. (2007).
Dynamic optimality—almost, SIAM Journal on Comput-
ing 37(1): 240–251.

Fan, K., Wang, X., Suto, K., Li, H. and Yang, Y. (2018).
Secure and efficient privacy-preserving ciphertext retrieval
in connected vehicular cloud computing, IEEE Network
32(3): 52–57.

Fenk, R. (2002). The BUB-tree, Proceedings of the 28th VLDB
International Conference on Very Large Data Bases
(VLDB’02), Hongkong, China, https://www.cse.
ust.hk/vldb2002/VLDB2002-proceedings/
papers/S34P16.pdf.

Graefe, G. (2011). Modern B-tree techniques, Foundations and
Trends R© in Databases 3(4): 203–402.

Guibas, L.J. and Sedgewick, R. (1978). A dichromatic
framework for balanced trees, 19th Annual Symposium on
Foundations of Computer Science (SFCS 1978), Ann Ar-
bor, MI, USA, pp. 8–21.

Guttman, A. (1984). R-trees: A dynamic index structure for
spatial searching, Proceedings of the 1984 ACM SIGMOD
International Conference on Management of Data, Boston,
MA, USA, pp. 47–57.

Haeupler, B., Sen, S. and Tarjan, R.E. (2015). Rank-balanced
trees, ACM Transactions on Algorithms 11(4): 1–26.

Hibbard, T.N. (1962). Some combinatorial properties of certain
trees with applications to searching and sorting, Journal of
the ACM 9(1): 13–28.

Horzyk, A. (2013). Artificial Associative Systems and Asso-
ciative Artificial Intelligence, Academic Publishing House
EXIT, Warsaw, (in Polish).

Horzyk, A. (2015). Innovative types and abilities of neural
networks based on associative mechanisms and a new
associative model of neurons, Proceedings of the Interna-
tional Conference on Artificial Intelligence and Soft Com-
puting, Zakopane, Poland, pp. 26–38.

Horzyk, A. (2017). Deep associative semantic neural graphs for
knowledge representation and fast data exploration, Pro-
ceedings of the 9th International Conference on Knowl-
edge Engineering and Ontology Development, Santa
Cruz/Funchal, Madeira, Portugal, pp. 67–79.

Horzyk, A. (2018). Associative graph data structures with an
efficient access via AVB+trees, Proceedings of the 11th
International Conference on Human System Interaction,
Gdańsk, Poland, pp. 169–175.

Horzyk, A. and Starzyk, J.A. (2018). Multi-class and multi-label
classification using associative pulsing neural networks,
2018 IEEE World Congress on Computational Intelligence
(WCCI 2018)/2018 International Joint Conference on Neu-
ral Networks (IJCNN 2018), Rio de Janeiro, Brazil, pp.
427–434.

Horzyk, A. and Starzyk, J.A. (2019). Associative data model in
search for nearest neighbors and similar patterns, Proceed-
ings of the 2019 IEEE Symposium Series on Computational
Intelligence, Xiamen, China, pp. 932–939.

Horzyk, A., Starzyk, J.A. and Graham, J. (2017). Integration of
semantic and episodic memories, Transactions on Neural
Networks and Learning Systems 28(12): 3084–3095.

Jensen, C.S., Lin, D. and Ooi, B.C. (2004). Query and update
efficient B+-tree based indexing of moving objects, Pro-
ceedings of the 30th International Conference on Very
Large Data Bases, Toronto, Canada, Vol. 30, pp. 768–779.

Kim, W.-H., Seo, J., Kim, J. and Nam, B. (2018). clfB-tree:
Cacheline friendly persistent B-tree for NVRAM, ACM
Transactions on Storage 14(1): 1–17.

Knuth, D.E. (1998). Sorting and Searching. The Art of Computer
Programming, Addison-Wesley, Boston, MA.

Lewicki, A. and Pancerz, K. (2020). Ant-based clustering
for flow graph mining, International Journal of Applied
Mathematics and Computer Science 30(3): 561–572, DOI:
10.34768/amcs-2020-0041.

Mehta, D. and Sahni, S. (2004). Handbook of Datastructures
and Applications, CRS Press Tylor & Francis Group, Boca
Raton, FL.

Meidan, Y., Bohadana, M., Mathov, Y., Mirsky, Y.,
Shabtai, A., Breitenbacher, D. and Elovici, Y. (2018).
N-BAIOT—network-based detection of IOT botnet attacks
using deep autoencoders, IEEE Pervasive Computing
17(3): 12–22.

Pfaff, B. (2004). Performance analysis of BSTs in system
software, ACM SIGMETRICS Performance Evaluation Re-
view 32(1): 410–411.

Sagiv, Y. (1986). Concurrent operations on B*-trees with
overtaking, Journal of Computer and System Sciences
33(2): 275–296.

Sedgewick, R. and Wayne, K. (2011). Algorithms,
Addison-Wesley, Upper Saddle River, NJ.

Sharma, V., Kumar, R. and Kumar, N. (2018). DPTR:
Distributed priority tree-based routing protocol for
FANETs, Computer Communications 122: 129–151.

Shen, M., Jiang, X. and Sun, T. (2018). Anomaly detection based
on nearest neighbor search with locality-sensitive B-tree,
Neurocomputing 289: 55–67.

Sun, P., Wen, Y., Ta, D.N.B. and Xie, H. (2016). Metaflow:
A scalable metadata lookup service for distributed file
systems in data centers, IEEE Transactions on Big Data
4(2): 203–216.

https://www.cse.ust.hk/vldb2002/VLDB2002-proceedings/papers/S34P16.pdf
https://www.cse.ust.hk/vldb2002/VLDB2002-proceedings/papers/S34P16.pdf
https://www.cse.ust.hk/vldb2002/VLDB2002-proceedings/papers/S34P16.pdf

ASA-graphs for efficient data representation and processing 731

Toptsis, A.A. (1993). B**-tree: A data organization method
for high storage utilization, Proceedings of ICCI’93: 5th
International Conference on Computing and Information,
Sudbury, ON, Canada, pp. 277–281.

Wieczorek, M., Siłka, J., and Woźniak, M. (2020). Neural
network powered COVID-19 spread forecasting model,
Chaos, Solitons & Fractals 140, Article no. 110203.

Woźniak, M., Wieczorek, M., Siłka, J. and Połap, D. (2020).
Body pose prediction based on motion sensor data and
recurrent neural network, IEEE Transactions on Industrial
Informatics, DOI: 10.1109/TII.2020.3015934.

Wu, S., Jiang, D., Ooi, B.C. and Wu, K.-L. (2010). Efficient
B-tree based indexing for cloud data processing, Proceed-
ings of the VLDB Endowment 3(1–2): 1207–1218.

Adrian Horzyk received his MS degree in
computer science from Jagiellonian University,
Kraków, Poland, and his PhD and DSc degrees
in computer science from the AGH University
of Science and Technology, Kraków, where he
is currently an associate professor. His present
research interests encompass the development
of knowledge-based models and methods of ar-
tificial and computational intelligence, associa-
tive and spiking neurons and their networks and

memories, new machine learning strategies and algorithms, data mining,
knowledge engineering, and cognitive systems. He is a co-founder and
has been a member of the Polish Association of Artificial Intelligence
since 2009 and a board member of the Polish Neural Network Society
(PTSN) since 2011. He has been a deputy team leader of the AGH Uni-
versity of Science and Technology in the CERN Alice experiments and
projects since 2017. He is also an IEEE Senior Member.

Daniel Bulanda received his MD degree from
Jagiellonian University, Kraków, Poland, in
2013. He is a PhD student of biomedical engi-
neering at the Faculty of Electrical Engineering,
Automatics, Computer Science, and Biomedical
Engineering at the AGH University of Science
and Technology, Kraków. He is also a computer
science student at the Faculty of Electrical Engi-
neering of the Warsaw University of Technology,
Poland. His scientific interests include computa-

tional intelligence, associative models, computer vision, and application
of machine learning techniques in medicine, especially in radiology and
cardiology.

Janusz A. Starzyk received his MS degree in
applied mathematics and his PhD degree in elec-
trical engineering from the Warsaw University of
Technology, Poland, and his DSc degree in elec-
trical engineering from the Silesian University of
Technology, Gliwice, Poland. He has been an as-
sistant professor with the Institute of Electronics
Fundamentals, Warsaw University of Technol-
ogy. He has also been a professor of electrical en-
gineering and computer science with Ohio Uni-

versity, USA. Since 2007, he has been the head of the Information Sys-
tems Applications Department of the University of Information Technol-
ogy and Management, Rzeszów, Poland. His current research interests
include embodied machine intelligence, motivated goal-driven learning,
self-organizing associative spatiotemporal memories, active learning of
sensory-motor interactions, machine consciousness, and applications of
machine learning to autonomous robots and avatars. He is an IEEE Life
Member.

Received: 3 August 2020
Revised: 15 November 2020
Accepted: 20 November 2020

	Introduction
	Data tree structures for efficient search
	ASA-graphs
	ASA-graph properties
	Algorithm 1: Search operation in ASA-graphs
	Algorithm 2: Insert operation in ASA-graphs
	Algorithm 3: Remove operation in ASA-graphs
	Computational complexity of ASA-graphs
	Data mining examples

	Experiments and efficiency comparisons
	Testing time efficiency of the search, insert, and remove operations
	Testing typical data mining tasks

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

