1. bookVolumen 7 (2013): Heft 4 (August 2013)
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1875-855X
Erstveröffentlichung
01 Jun 2007
Erscheinungsweise
6 Hefte pro Jahr
Sprachen
Englisch
Open Access

Review article. Strategies for in vivo targeted gene silencing

Online veröffentlicht: 04 Feb 2017
Volumen & Heft: Volumen 7 (2013) - Heft 4 (August 2013)
Seitenbereich: 463 - 475
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1875-855X
Erstveröffentlichung
01 Jun 2007
Erscheinungsweise
6 Hefte pro Jahr
Sprachen
Englisch

1. Davidson BL, McCray PB Jr. Current prospects for RNA interference-based therapies. Nat Rev Genet. 2011; 12:329-40.10.1038/nrg2968709766521499294DOI öffnenSearch in Google Scholar

2. Ali N, Datta SK, Datta K.RNA interference in designing transgenic crops. GM Crops. 2010; 1:207-13.10.4161/gmcr.1.4.1334421844675DOI öffnenSearch in Google Scholar

3. Elbashir SM, Lendeckel W, Tuschl T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 2001; 15:188-200.10.1101/gad.86230131261311157775DOI öffnenSearch in Google Scholar

4. Novina CD, Sharp PA. The RNAi revolution. Nature. 2004; 430:161-4.10.1038/430161a15241403DOI öffnenSearch in Google Scholar

5. Hannon GJ, Rossi JJ. Unlocking the potential of the human genome with RNA interference. Nature. 2004; 431:371-8.10.1038/nature0287015372045DOI öffnenSearch in Google Scholar

6. Shen Y, Wang B, Lu Y, Ouahab A, Li Q, Tu J. A novel tumor-targeted delivery system with hydrophobized hyaluronic acid-spermine conjugates (HHSCs) for efficient receptor-mediated siRNA delivery. Int J Pharm. 2011; 414:233-43. Epub 2011 Apr 23.10.1016/j.ijpharm.2011.04.04921545832DOI öffnenSearch in Google Scholar

7. Castanotto D, Rossi JJ. The promises and pitfalls of RNA- interference-based therapeutics. Nature. 2009; 457:426-33.10.1038/nature07758270266719158789DOI öffnenSearch in Google Scholar

8. Oh YK, Park TG. siRNA delivery systems for cancer treatment. Adv Drug Deliv Rev. 2009; 61:850-62. Epub 2009 May 5.10.1016/j.addr.2009.04.01819422869DOI öffnenSearch in Google Scholar

9. Walton SP, Wu M, Gredell JA, Chan C. Designing highly active siRNA for therapeutic applications. FEBS J. 2010; 277: 4806-13. doi: 10.1111/j.1742-4658. 2010.07903.x.Search in Google Scholar

10. Samuel-Abraham S, Leonard JN. Staying on message: design principles for controlling nonspecific responses to siRNA. FEBS J. 2010; 277:4828-36. doi: 10.1111/ j.1742-4658.2010.07905.x.Search in Google Scholar

11. Dubey PK, Mishra V, Jain S, Mahor S, Vyas SP. Liposomes modified with cyclic RGD peptide for tumor targeting.J Drug Target. 2004; 12:257-64.10.1080/10611860410001728040DOI öffnenSearch in Google Scholar

12. Lu PY, Xie FY, Woodle MC. Modulation of angiogenesis with siRNA inhibitors for novel therapeutics. Trends Mol Med. 2005; 11:104-13.10.1016/j.molmed.2005.01.005DOI öffnenSearch in Google Scholar

13. Pirollo KF, Chang EH. Targeted delivery of small interfering RNA: approaching effective cancer therapies. Cancer Res. 2008; 68:1247-50.10.1158/0008-5472.CAN-07-5810DOI öffnenSearch in Google Scholar

14. Guo P, Coban O, Snead NM, Trebley J, Hoeprich S, Guo S, et al. Engineering RNA for targeted siRNA delivery and medical application. Adv Drug Deliv Rev. 2010; 62:650-66. Epub 2010 Mar 15.10.1016/j.addr.2010.03.008DOI öffnenSearch in Google Scholar

15. Shoemaker BA, Zhang D, Thangudu RR, Tyagi M, Fong JH, Marchler-Bauer A, et al. Inferred Biomolecular Interaction Server-a web server to analyze and predict protein interacting partners and binding sites. Nucleic Acids Res. 2010; 38(Database issue):D518-24. Epub 2009 Oct 20.10.1093/nar/gkp842DOI öffnenSearch in Google Scholar

16. Liu B. Exploring cell type-specific internalizing antibodies for targeted delivery of siRNA. Brief Funct Genomic Proteomic. 2007; 6:112-9. Epub 2007 Jul 31.10.1093/bfgp/elm015Search in Google Scholar

17. Dickerson EB, Blackburn WH, Smith MH, Kapa LB, Lyon LA, McDonald JF. Chemosensitization of cancer cells by siRNA using targeted nanogel delivery. BMC Cancer. 2010; 10:10.10.1186/1471-2407-10-10Search in Google Scholar

18. Cerchia L, Hamm J, Libri D, Tavitian B, de Franciscis V. Nucleic acid aptamers in cancer medicine. FEBS Lett. 2002; 528:12-6.10.1016/S0014-5793(02)03275-1Search in Google Scholar

19. McNamara JO, Andrechek ER, Wang Y, Viles KD, Rempel RE, Gilboa E, et al. Cell type-specific delivery of siRNA with aptamer-siRNA chimeras. Nat Biotechnol. 2006; 24:1005-15.10.1038/nbt122316823371DOI öffnenSearch in Google Scholar

20. Cho EJ, Lee JW, Ellington AD. Applications of aptamers as sensors. Annu Rev Anal Chem (Palo Alto Calif). 2009; 2:241-64.10.1146/annurev.anchem.1.031207.11285120636061DOI öffnenSearch in Google Scholar

21. Dassie JP, Liu XY, Thomas GS, Whitaker RM, Thiel KW, Stockdale KR, et al. Systemic administration of optimized aptamer-siRNA chimeras promotes regression of PSMA-expressing tumors. Nat Biotechnol. 2009; 27:839-49.10.1038/nbt.1560279169519701187DOI öffnenSearch in Google Scholar

22. Schiffelers RM, Ansari A, Xu J, Zhou Q, Tang Q, Storm G, et al. Cancer siRNA therapy by tumor selective delivery withligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res. 2004; 32:e149.10.1093/nar/gnh14052881715520458DOI öffnenSearch in Google Scholar

23. de Wolf HK, Snel CJ, Verbaan FJ, Schiffelers RM, Hennink WE, Storm G. Effect of cationic carriers on the pharmacokinetics and tumor localization of nucleic acids after intravenous administration. Int J Pharm. 2007; 331:167-75. Epub 2006 Oct 26.10.1016/j.ijpharm.2006.10.02917134859Search in Google Scholar

24. Leng Q, Scaria P, Zhu J, Ambulos N, Campbell P, Mixson AJ. Highly branched HK peptides are effective carriers of siRNA. J Gene Med. 2005; 7:977-86.10.1002/jgm.74815772938DOI öffnenSearch in Google Scholar

25. Han HD, Mangala LS, Lee JW, Shahzad MM, Kim HS, Shen D, et al. Targeted gene silencing using RGDLabeled chitosan nanoparticles. Clin Cancer Res. 2010; 16:3910-22. Epub 2010 Jun 10.10.1158/1078-0432.CCR-10-0005291298420538762DOI öffnenSearch in Google Scholar

26. Davis ME, Zuckerman JE, Choi CH, Seligson D, Tolcher A, Alabi CA, et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature. 2010; 464:1067-70. Epub 2010 Mar 21.10.1038/nature08956285540620305636DOI öffnenSearch in Google Scholar

27. Bartlett DW, Su H, Hildebrant IJ, Weber WA, Davis ME. Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging. Proc Natl Acad Sci USA. 2007; 104:15549-54. Epub 2007 Sep 17.10.1073/pnas.0707461104197821817875985DOI öffnenSearch in Google Scholar

28. Pirollo KF, Rait A, Zhou Q, Hwang SH, Dagata JA, Zon G, et al. Materializing the potential of small interfering RNA via a tumor-targeting nanodelivery system. Cancer Res. 2007; 67:2938-43.10.1158/0008-5472.CAN-06-453517409398DOI öffnenSearch in Google Scholar

29. Christian S, Pilch J, Akerman ME, Porkka K, Laakkonen P, Ruoslahti E. Nucleolin expressed at the cell surface is a marker of endothelial cells in angiogenic blood vessels. J Cell Biol. 2003; 163:871-8.10.1083/jcb.200304132217367914638862DOI öffnenSearch in Google Scholar

30. Porkka K, Laakkonen P, Hoffman JA, Bernasconi M, Ruoslahti E. A fragment of the HMGN2 protein homes to the nuclei of tumor cells and tumor endothelial cells in vivo. Proc Natl Acad Sci USA. 2002; 99:7444-9.10.1073/pnas.06218959912425012032302DOI öffnenSearch in Google Scholar

31. Derfus AM, Chen AA, Min DH, Ruoslahti E, Bhatia SN. Targeted quantum dot conjugates for siRNA delivery. Bioconjug Chem. 2007; 18:1391-6. Epub 2007 Jul 14.10.1021/bc060367e17630789DOI öffnenSearch in Google Scholar

32. Dohmen C, Wagner E. Multifunctional CPP polymer system for tumor-targeted pDNA and siRNA delivery. Methods Mol Biol. 2011; 683:453-63.10.1007/978-1-60761-919-2_3221053149Search in Google Scholar

33. Kim SW, Kim NY, Choi YB, Park SH, Yang JM, Shin S. RNA interference in vitro and in vivo using an arginine peptide/siRNA complex system.J Control Release. 2010; 143:335-43. Epub 2010 Jan 14.10.1016/j.jconrel.2010.01.00920079391DOI öffnenSearch in Google Scholar

34. Meade BR, Dowdy SF. Exogenous siRNA delivery using peptide transduction domains/cell penetrating peptides. Adv Drug Deliver Rev. 2007; 59:134-40. Epub 2007 Mar 15.10.1016/j.addr.2007.03.00417451840DOI öffnenSearch in Google Scholar

35. Crombez L, Morris MC, Dufort S, Aldrian-Herrada G, Nguyen Q, McMaster G, et al. Targeting cyclin B1 through peptide-based delivery of siRNA prevents tumour growth. Nucleic Acids Res. 2009; 37:4559-69. Epub 2009 May 29.10.1093/nar/gkp451272427619483097DOI öffnenSearch in Google Scholar

36. Lu ZX, Liu LT, Qi XR. Development of small interfering rNA delivery system using PEI-PEG-APRPG polymer for antiangiogenic vascular endothelial growth factor tumor-targeted therapy. Int J Nanomedicine. 2011; 6: 1661-73. Epub 2011 Aug 11.10.2147/IJN.S22293316095221904456Search in Google Scholar

37. Kumar P, Wu H, McBride JL,J ung KE, Kim MH, Davisdon BL,et al. Transvascular delivery of small interfering RNA to the central nervous system. Nature. 2007; 448:39-43. Epub 2007 Jun 17.10.1038/nature0590117572664Search in Google Scholar

38. York AW, Huang F, McCormick CL. Rational design of targeted cancer therapeutics through the multiconjugation of folate and cleavable siRNA to RAFT-synthesized (HPMA-s-APMA) copolymers. Biomacromolecules. 2010; 11:505-14.10.1021/bm901249n281902620050670DOI öffnenSearch in Google Scholar

39. Murase Y, Asai T, Katanasaka Y, Sugiyama T, Shimizu K, Maeda N, et al. A novel DDS strategy, “dualtargeting”, and its application for antineovascular therapy. Cancer Lett. 2010; 287:165-71. Epub 2009 Jul 17.10.1016/j.canlet.2009.06.00819616372Search in Google Scholar

40. Thomas M, Kularatne SA, Qi L, Kleindl P, Leamon CP, Hansen MJ, et al. Ligand-targeted delivery of small interfering RNAs to malignant cells and tissues. Ann N Y Acad Sci. 2009; 1175:32-9.10.1111/j.1749-6632.2009.04977.x19796075Search in Google Scholar

41. Zhang P, Chen Y, Jiang X, Tu Z, Zou L. Tumortargeted efficiency of shRNA vector harboring chimera hTERT/U6 promoter. Oncol Rep. 2010; 23: 1309-16.Search in Google Scholar

42. Kim SS, Garg H, Joshi A, Manjunath N. Strategies for targeted nonviral delivery of siRNA in vivo. Trends Mol Med. 2009; 15:491-500. Epub 2009 Oct 19.10.1016/j.molmed.2009.09.001444103119846342DOI öffnenSearch in Google Scholar

43. Tian Z, Wang H, Jia Z, Shi J, Tang J, Mao L, et al. Tumor-targeted inhibition by a novel strategymimoretrovirus expressing siRNA targeting the Pokemon gene. Curr Cancer Drug Targets. 2010; 10: 932-41.10.2174/15680091079335790720879980DOI öffnenSearch in Google Scholar

44. Kim JH, Bae SM, Na MH, Shin H, Yang YJ, Min KH, et al. Facilitated intracellular delivery of peptideguided nanoparticles in tumor tissues. J Control Release. 2012; 157:493-9. Epub 2011 Sep 16.10.1016/j.jconrel.2011.09.07021945679Search in Google Scholar

45. Yoshizawa T, Hattori Y, Hakoshima M, Koga K, Maitani Y. Folate-linked lipid-based nanoparticles for synthetic siRNA delivery in KB tumor xenografts. Eur J Pharm Biopharm. 2008; 70:718-25. Epub 2008 Jul 4.10.1016/j.ejpb.2008.06.02618647651DOI öffnenSearch in Google Scholar

46. Wu XL, Kim JH, Koo H, Bae SM, Shin H, Kim MS, et al. Tumor-targeting peptide conjugated pHresponsive micelles as a potential drug carrier for cancer therapy. Bioconjug Chem. 2010; 21:208-13.10.1021/bc900528320073455DOI öffnenSearch in Google Scholar

47. Wang J, Liu W, Tu Q, Wang J, Song N, Zhang Y, et al. Folate-decorated hybrid polymeric nanoparticles for chemically and physically combined paclitaxel loading and targeted delivery. Biomacromolecules. 2011; 12:228-34. Epub 2010 Dec 15.10.1021/bm101206g21158381DOI öffnenSearch in Google Scholar

48. Wang M, Thanou M. Targeting nanoparticles to cancer. Pharmacol Res. 2010; 62:90-9. Epub 2010 Apr 7.10.1016/j.phrs.2010.03.00520380880DOI öffnenSearch in Google Scholar

49. Abeylath SC, Ganta S, Iyer AK, Amiji M. Combinatorialdesigned multifunctional polymeric nanosystems for tumor-targeted therapeutic delivery. Acc Chem Res. 2011; 44:1009-17. Epub 2011 Jul 15.10.1021/ar200010621761902DOI öffnenSearch in Google Scholar

50. Taratula O, Garbuzenko O, Savla R, Wang YA, He H, Minko T. Multifunctional nanomedicine platform for cancer specific delivery of siRNA by superparamagnetic iron oxide nanoparticles-dendrimer complexes. Curr Drug Deliv. 2011; 8:59-69.10.2174/15672011179366364221034421DOI öffnenSearch in Google Scholar

51. Taratula O, Garbuzenko OB, Chen AM, Minko T. Innovative strategy for treatment of lung cancer: targeted nanotechnology-based inhalation codelivery of anticancer drugs and siRNA. J Drug Target. 2011; 19:900-14.10.3109/1061186X.2011.62240421981718DOI öffnenSearch in Google Scholar

52. Tseng YC, Huang L. Self-assembled lipid nanomedicines for siRNA tumor targeting. J Biomed Nanotechnol. 2009; 5:351-63.10.1166/jbn.2009.1044551241920055081DOI öffnenSearch in Google Scholar

53. Ryu JH, Koo H, Sun IC, Yuk SH, Choi K, Kim K, Kwon IC. Tumor-targeting multi-functional nanoparticles for theragnosis: New paradigm for cancer therapy. Adv Drug Deliv Rev. 2012. [Epub ahead of print]10.1016/j.addr.2012.06.01222772034Search in Google Scholar

54. Akhter S, Ahmad Z, Singh A, Ahmad I, Rahman M, Anwar M, et al. Cancer targeted metallic nanoparticle: targeting overview, recent advancement and toxicity concern. Curr Pharm Des. 2011; 17:1834-50.10.2174/13816121179639100121568874DOI öffnenSearch in Google Scholar

55. Sanguino A, Lopez-Berestein G, Sood AK. Strategies for in vivo siRNA delivery in cancer. Mini Rev Med Chem. 2008; 8:248-55.10.2174/13895570878374407418336345Search in Google Scholar

56. Mueller C, Flotte TR. Clinical gene therapy using recombinant adeno-associated virus vectors. Gene Ther. 2008; 15:858-63. Epub 2008 Apr 17.10.1038/gt.2008.6818418415DOI öffnenSearch in Google Scholar

57. Han Z, Conley SM, Naash MI. AAV and compacted DNA nanoparticles for the treatment of retinal disorders: challenges and future prospects. Invest Ophthalmol Vis Sci. 2011; 52:3051-9.10.1167/iovs.10-6916310901521558483DOI öffnenSearch in Google Scholar

58. Boeckle S, Wagner E. Optimizing targeted gene delivery: chemical modification of viral vectors and synthesis of artificial virus vector systems. AAPS J. 2006; 8:E731-42.10.1208/aapsj080483275137017285739DOI öffnenSearch in Google Scholar

59. Yotnda P, Davis AR, Hicks MJ, Templeton NS, Brenner MK. Liposomal enhancement of the antitumor activity of conditionally replicationcompetent adenoviral plasmids. Mol Ther. 2004; 9: 489-95.10.1016/j.ymthe.2004.01.01815093179DOI öffnenSearch in Google Scholar

60. Curiel DT, Wagner E, Cotten M, Birnstiel ML, Agarwal S, Li CM, et al. High-efficiency gene transfer mediated by adenovirus coupled to DNA-polylysine complexes. Hum Gene Ther. 1992; 3:147-54.10.1089/hum.1992.3.2-1471391034DOI öffnenSearch in Google Scholar

61. Wagner E, Zatloukal K, Cotten M, Kirlappos H, Mechtler K, Curiel DT, et al. Coupling of adenovirus to transferring- polylysine/DNA complexes greatly enhances receptor-mediated gene delivery and expression of transfected genes. Proc Natl Acad Sci USA. 1992; 89:6099-103.10.1073/pnas.89.13.6099494451631096DOI öffnenSearch in Google Scholar

62. Cho SK, Kwon YJ. Simultaneous gene transduction and silencing using stimuli-responsive viral/nonviral chimeric nanoparticles. Biomaterials. 2012; 33:3316-23. Epub 2012 Jan 24.10.1016/j.biomaterials.2012.01.02722281425DOI öffnenSearch in Google Scholar

63. Wei F, McConnell KI, Yu TK, Suh J. Conjugation of paclitaxel on adeno-associated virus (AAV) nanoparticles for co-delivery of genes and drugs. Eur J Pharm Sci. 2012; 46:167-72. Epub 2012 Mar 3.10.1016/j.ejps.2012.02.02222406091DOI öffnenSearch in Google Scholar

64. Musick MA, McConnell KI, Lue JK, Wei F, Chen C, Suh J. Reprogramming virus nanoparticles to bind metal ions upon activation with heat. Biomacromolecules. 2011; 12:2153-8. Epub 2011 Apr 29.10.1021/bm200225x21528841DOI öffnenSearch in Google Scholar

65. Hwang JH, Lee S, Kim E, Kim JS, Lee CH, Ahn IS, et al. Heparin-coated superparamagnetic nanoparticlemediated adeno- associated virus delivery for enhancing cellular transduction. Int J Pharm. 2011; 421:397-404. Epub 2011 Oct 13.10.1016/j.ijpharm.2011.10.01922016032DOI öffnenSearch in Google Scholar

66. Figueiredo M, Esenaliev R. PLGA Nanoparticles for Ultrasound-Mediated Gene Delivery to Solid Tumors. J Drug Deliv. 2012; 2012:767839. Epub 2012 Feb 28.10.1155/2012/767839331233722506124Search in Google Scholar

67. Zheng MM, Zhou XY, Wang LP, Wang ZG. Experimental research of RB94 gene transfection into retinoblastoma cells using ultrasound -targeted microbubble destruction. Ultrasound Med Biol. 2012; 38:1058-66. Epub 2012 Apr 21.10.1016/j.ultrasmedbio.2012.02.00722502879DOI öffnenSearch in Google Scholar

68. Zhong S, Shu S, Wang Z, Luo J, Zhong W, Ran H, et al. Enhanced homing of mesenchymal stem cells to the ischemic myocardium by ultrasound-targeted microbubble destruction. Ultrasonics. 2012; 52:281-6. Epub 2011 Aug 27.10.1016/j.ultras.2011.08.01321937069DOI öffnenSearch in Google Scholar

69. Huang Q, Deng J, Xie Z, Wang F, Chen S, Lei B, et al. Effective gene transfer into central nervous system following ultrasound-microbubbles-induced opening of the blood-brain barrier. Ultrasound Med Biol. 2012; 38:1234-43.10.1016/j.ultrasmedbio.2012.02.01922677255DOI öffnenSearch in Google Scholar

70. Chen YC, Jiang LP, Liu NX, Wang ZH, Hong K, Zhang QP. P85, Optison microbubbles and ultrasound cooperate in mediating plasmid DNA transfection in mouse skeletal muscles in vivo. Ultrason Sonochem. 2011; 18:513-9. Epub 2010 Sep 21.10.1016/j.ultsonch.2010.08.01320863738Search in Google Scholar

71. Fujii H, Li SH, Wu J, Miyagi Y, Yau TM, Rakowski H, et al. Repeated and targeted transfer of angiogenic plasmids into the infarcted rat heart via ultrasound targeted microbubble destruction enhances cardiac repair. Eur Heart J. 2011; 32:2075-84. Epub 2010 Dec 31.10.1093/eurheartj/ehq47521196445DOI öffnenSearch in Google Scholar

72. Dash R, Azab B, Shen XN, Sokhi UK, Sarkar S, Su ZZ, et al. Developing an effective gene therapy for prostate cancer: New technologies with potential to translate from the laboratory into the clinic. Discov Med. 2011; 11:46-56.Search in Google Scholar

73. Kobulnik J, Kuliszewski MA, Stewart DJ, Lindner JR, Leong-Poi H. Comparison of gene delivery techniques for therapeutic angiogenesis ultrasound-mediated destruction of carrier microbubbles versus direct intramuscular injection.J Am Coll Cardiol. 2009; 54: 1735-42.10.1016/j.jacc.2009.07.02319850216DOI öffnenSearch in Google Scholar

74. Li HL, Zheng XZ, Wang HP, Li F, Wu Y, Du LF. Ultrasound- targeted microbubble destruction enhances AAV-mediated gene transfection in human RPE cells in vitro and rat retina in vivo. Gene Ther. 2009; 16:1146-53. Epub 2009 Jul 2.10.1038/gt.2009.8419571889DOI öffnenSearch in Google Scholar

75. Zheng X, Ji P, Hu J.Sonoporation using microbubbles promotes lipofectamine-mediated siRNA transduction to rat retina. Bosn J Basic Med Sci. 2011; 11:147-52.10.17305/bjbms.2011.2565436254721875415Search in Google Scholar

76. Christiansen JP, Leong-Poi H, Klibanov AL, Kaul S, Lindner JR. Noninvasive imaging of myocardial reperfusion injury using leukocyte-targeted contrast echocardiography. Circulation. 2002; 105:1764-7.10.1161/01.CIR.0000015466.89771.E211956115DOI öffnenSearch in Google Scholar

77. Borden MA, Sarantos MR, Stieger SM, Simon SI, Ferrara KW, Dayton PA. Ultrasound radiation force modulates ligand availability on targeted contrast agents. Mol Imaging. 2006; 5:139-47.10.2310/7290.2006.00016Search in Google Scholar

78. Zheng X, Du L, Wang H, Gu Q. A novel approach to attenuate proliferative vitreoretinopathy using ultrasound-targeted microbubble destruction and recombinant adeno-associated virus-mediated RNA interference targeting transforming growth factor-β2 and platelet-derived growth factor-B. J Gene Med. 2012; 14:339-47.10.1002/jgm.262922499528Search in Google Scholar

79. Huang J, Gao J, Lv X, Li G, Hao D, Yao X, et al. Target gene therapy of glioma: overexpression of BAX gene under the control of both tissue-specific promoter and hypoxia-inducible element. Acta Biochim Biophys Sin. 2010; 42:274-80.10.1093/abbs/gmq01620383466DOI öffnenSearch in Google Scholar

80. Li XH, Zhou P, Wang LH, Tian SM, Qian Y, Chen LR, et al. The targeted gene (KDRP-CD/TK) therapy of breast cancer mediated by SonoVue and ultrasound irradiation in vitro. Ultrasonics. 2012; 52:186-91. Epub 2011 Aug 18.10.1016/j.ultras.2011.08.00221906771DOI öffnenSearch in Google Scholar

81. Ke H, Xing Z, Zhao B, Wang J, Liu J, Guo C, et al. Quantum-dot-modified microbubbles with bi-mode imaging capabilities. Nanotechnology. 2009; 20:425105. Epub 2009 Sep 25.10.1088/0957-4484/20/42/42510519779227DOI öffnenSearch in Google Scholar

82. Chen ZY, Liang K, Qiu RX. Targeted gene delivery in tumor xenografts by the combination of ultrasoundtargeted microbubble destruction and polyethylenimine to inhibit survivin gene expression and induce apoptosis. J Exp Clin Cancer Res. 2010; 29:152.10.1186/1756-9966-29-152300364121092274DOI öffnenSearch in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo