1. bookVolume 4 (2021): Issue 1 (April 2021)
Zeitschriftendaten
License
Format
Zeitschrift
Erstveröffentlichung
30 Jan 2019
Erscheinungsweise
2 Hefte pro Jahr
Sprachen
Englisch
access type Open Access

Production of Biopolymer Foams Based on Polylactic Acid Plasticized With Lactic Acid Oligomer

Online veröffentlicht: 08 Jul 2021
Seitenbereich: 32 - 37
Zeitschriftendaten
License
Format
Zeitschrift
Erstveröffentlichung
30 Jan 2019
Erscheinungsweise
2 Hefte pro Jahr
Sprachen
Englisch

[1] PlasticsEurope: Plastics - the facts 2019: An analysis of European plastics production, demand and waste data, (2020). Search in Google Scholar

[2] Plastics Insight: Polylactic Acid Properties, Production, Price, Market and Uses. (accessed on: 2020.12.12.) https://www.plasticsinsight.com/resin-intelligence/resin-prices/polylactic-acid/ Search in Google Scholar

[3] Edmund H. I., Herman F. M.: Principles of Plasticization In: Plasticization and Plasticizer Processes (eds.: Platzer N. A. J.) American Chemical Society, Philadelphia, USA, Vol 1, (1965). Search in Google Scholar

[4] Pillin I., Montrelay N., Grohens Y.: Thermo-mechanical characterization of plasticized PLA: Is the miscibility the only significant factor? Polymer, 47/13. (2006) 4676–4682. https://doi.org/10.1016/j.polymer.2006.04.013 Search in Google Scholar

[5] Kulinski Z., Piorkowska E.: Crystallization, structure and properties of plasticized poly(l-lactide). Polymer, 46/23. (2005) 10290–10300. https://doi.org/10.1016/j.polymer.2005.07.101 Search in Google Scholar

[6] Lee S.-T., Park C. B.: Foam Extrusion: Principles and Practice. CRC Press, Boca Raton (2014). Search in Google Scholar

[7] Kolstad J. J., Vink E. T. H., Wilde D. B., Debeer L.: Assessment of anaerobic degradation of Ingeo polylactides under accelerated landfill conditions. Polymer Degradation and Stability, 97. (2012) 1131–1141. https://doi.org/10.1016/j.polymdegrad-stab.2012.04.003 Search in Google Scholar

[8] Huang C., Thomas N. L.: Fabricating porous poly- (lactic acid) fibres via electrospinning. European Polymer Journal, 99. (2018) 464–476. https://doi.org/10.1016/j.eurpolymj.2017.12.025 Search in Google Scholar

[9] Kmetty Á., Litauszki K., Réti D.: Characterization of Different Chemical Blowing Agents and Their Applicability to Produce Poly(Lactic Acid) Foams by Extrusion. Applied Sciences, 8. (2018) 1–17. https://doi.org/10.3390/app8101960 Search in Google Scholar

[10] Litauszki K., Kmetty Á.: Characterization of chemically foamed poly(lactic acid). In: ‚OATK. Balatonkenese, Materials Science and Engineering 903. (2020) 012018. https://doi.org/10.1088/1757-899X/903/1/012018 Search in Google Scholar

[11] Xu X., Park C. B., Xu D., Pop-Iliev R.: Effects of die geometry on cell nucleation of PS foams blown with CO2. Polymer Engineering & Science, 43/7. (2003) 1378–1390. https://doi.org/10.1002/pen.10117 Search in Google Scholar

[12] Sinclair R. G.: The Case for Polylactic Acid as a Commodity Packaging Plastic. Journal of Macro-molecular Science, Part A, 33. (1996) 585–597. https://doi.org/10.1080/10601329608010880 Search in Google Scholar

[13] Martin O., Avérous: L.: Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer, 42/14. (2001) 6209–6219. https://doi.org/10.1016/S0032-3861(01)00086-6 Search in Google Scholar

[14] Julien J., Bénézet J., Lafranche E., Quantin J., Bergeret A., Lacrampe M., Krawczak P.: Development of poly(lactic acid) cellular materials: Physical and morphological characterizations. Polymer, 53/25. (2012) 5885–5895. https://doi.org/10.1016/j.polymer.2012.10.005 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo