[
[1] PlasticsEurope: Plastics - the facts 2019: An analysis of European plastics production, demand and waste data, (2020).
]Search in Google Scholar
[
[2] Plastics Insight: Polylactic Acid Properties, Production, Price, Market and Uses. (accessed on: 2020.12.12.) https://www.plasticsinsight.com/resin-intelligence/resin-prices/polylactic-acid/
]Search in Google Scholar
[
[3] Edmund H. I., Herman F. M.: Principles of Plasticization In: Plasticization and Plasticizer Processes (eds.: Platzer N. A. J.) American Chemical Society, Philadelphia, USA, Vol 1, (1965).
]Search in Google Scholar
[
[4] Pillin I., Montrelay N., Grohens Y.: Thermo-mechanical characterization of plasticized PLA: Is the miscibility the only significant factor? Polymer, 47/13. (2006) 4676–4682. https://doi.org/10.1016/j.polymer.2006.04.01310.1016/j.polymer.2006.04.013
]Search in Google Scholar
[
[5] Kulinski Z., Piorkowska E.: Crystallization, structure and properties of plasticized poly(l-lactide). Polymer, 46/23. (2005) 10290–10300. https://doi.org/10.1016/j.polymer.2005.07.10110.1016/j.polymer.2005.07.101
]Search in Google Scholar
[
[6] Lee S.-T., Park C. B.: Foam Extrusion: Principles and Practice. CRC Press, Boca Raton (2014).
]Search in Google Scholar
[
[7] Kolstad J. J., Vink E. T. H., Wilde D. B., Debeer L.: Assessment of anaerobic degradation of Ingeo polylactides under accelerated landfill conditions. Polymer Degradation and Stability, 97. (2012) 1131–1141. https://doi.org/10.1016/j.polymdegrad-stab.2012.04.003
]Search in Google Scholar
[
[8] Huang C., Thomas N. L.: Fabricating porous poly- (lactic acid) fibres via electrospinning. European Polymer Journal, 99. (2018) 464–476. https://doi.org/10.1016/j.eurpolymj.2017.12.02510.1016/j.eurpolymj.2017.12.025
]Search in Google Scholar
[
[9] Kmetty Á., Litauszki K., Réti D.: Characterization of Different Chemical Blowing Agents and Their Applicability to Produce Poly(Lactic Acid) Foams by Extrusion. Applied Sciences, 8. (2018) 1–17. https://doi.org/10.3390/app810196010.3390/app8101960
]Search in Google Scholar
[
[10] Litauszki K., Kmetty Á.: Characterization of chemically foamed poly(lactic acid). In: ‚OATK. Balatonkenese, Materials Science and Engineering 903. (2020) 012018. https://doi.org/10.1088/1757-899X/903/1/01201810.1088/1757-899X/903/1/012018
]Search in Google Scholar
[
[11] Xu X., Park C. B., Xu D., Pop-Iliev R.: Effects of die geometry on cell nucleation of PS foams blown with CO2. Polymer Engineering & Science, 43/7. (2003) 1378–1390. https://doi.org/10.1002/pen.1011710.1002/pen.10117
]Search in Google Scholar
[
[12] Sinclair R. G.: The Case for Polylactic Acid as a Commodity Packaging Plastic. Journal of Macro-molecular Science, Part A, 33. (1996) 585–597. https://doi.org/10.1080/1060132960801088010.1080/10601329608010880
]Search in Google Scholar
[
[13] Martin O., Avérous: L.: Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer, 42/14. (2001) 6209–6219. https://doi.org/10.1016/S0032-3861(01)00086-610.1016/S0032-3861(01)00086-6
]Search in Google Scholar
[
[14] Julien J., Bénézet J., Lafranche E., Quantin J., Bergeret A., Lacrampe M., Krawczak P.: Development of poly(lactic acid) cellular materials: Physical and morphological characterizations. Polymer, 53/25. (2012) 5885–5895. https://doi.org/10.1016/j.polymer.2012.10.00510.1016/j.polymer.2012.10.005
]Search in Google Scholar