[
[1] Potra F. A.: Weighted Complementarity Problems -a New Paradigm for Computing Equilibria. SIAM Journal on Optimization, 22/4. (2012) 1634–1654. https://doi.org/10.1137/11083731010.1137/110837310
]Search in Google Scholar
[
[2] Asadi S., Darvay Zs., Lesaja G., Mahdavi-Amiri N.: A Full-Newton Step Interior-Point Method for Monotone Weighted Linear Complementarity Problems. Journal of Optimization Theory and Applications, 186/3. (2020) 864–878. https://doi.org/10.1007/s10957-020-01728-410.1007/s10957-020-01728-4
]Search in Google Scholar
[
[3] Potra F. A.: Sufficient Weighted Complementarity Problems. Computational Optimization and Applications, 64/2. (2016) 467–488. https://doi.org/10.1007/s10589-015-9811-z10.1007/s10589-015-9811-z
]Search in Google Scholar
[
[4] Darvay Zs.: A new Algorithm for Solving Self-Dual Linear Optimization Problems. Studia Universitatis Babeş-Bolyai, Series Informatica, 47/1 (2002) 15–26.
]Search in Google Scholar
[
[5] Darvay Zs.: New Interior Point Algorithms in Linear Programming. Advanced Modeling and Optimization, 5/1. (2003) 51–92.
]Search in Google Scholar
[
[6] Darvay Zs., Orbán A.-Sz.: Implementation of the Full-Newton Step Algorithm for Weighted Linear Complementarity Problems. Műszaki Tudományos Közlemények, 15/1. (2021) 15–18. https://doi.org/10.33894/mtk-2021.15.0410.33894/mtk-2021.15.04
]Search in Google Scholar
[
[7] Asadi S., Mansouri H.: Polynomial Interior-Point Algorithm for P * (κ) Horizontal Linear Complementarity Problems. Numerical Algorithms, 63/2. (2013) 385–398. https://doi.org/10.1007/s11075-012-9628-010.1007/s11075-012-9628-0
]Search in Google Scholar
[
[8] Mansouri H., Pirhaji M.: A Polynomial Interior-Point Algorithm for Monotone Linear Complementarity Problems. Journal of Optimization Theory and Applications, 157/2. (2013) 451–461. https://doi.org/10.1007/s10957-012-0195-210.1007/s10957-012-0195-2
]Search in Google Scholar
[
[9] Achache M.: Complexity Analysis and Numerical Implementation of a Short-Step Primal-Dual Algorithm for Linear Complementarity Problems. Applied Mathematics and Computation, 216/7. (2010) 1889–1895. https://doi.org/10.1016/j.amc.2010.03.01510.1016/j.amc.2010.03.015
]Search in Google Scholar