1. bookVolumen 28 (2020): Heft 1 (March 2020)
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1338-3973
Erstveröffentlichung
23 May 2011
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
Uneingeschränkter Zugang

A Numerical Investigation of Transient Groundwater Flows with a Phreatic Surface Along Complex Hillslopes

Online veröffentlicht: 03 Apr 2020
Volumen & Heft: Volumen 28 (2020) - Heft 1 (March 2020)
Seitenbereich: 11 - 19
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1338-3973
Erstveröffentlichung
23 May 2011
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch

Bartlett, M. S. – Porporato, A. (2018)A class of exact solutions of the Boussinesq equation for horizontal and sloping aquifers. Water Resour. Res., 54(2), 767–778.10.1002/2017WR022056Search in Google Scholar

Basha, H. A. – Maalouf, S. F. (2005)Theoretical and conceptual models of subsurface hillslope flows. Water Resour. Res., 41, W07018, doi:10.1029/2004WR003769.10.1029/2004WR003769Search in Google Scholar

Bear, J. – Zaslavsky, D. – Irmay, S. (1968)Physical Principles of Water Percolation and Seepage. Arid Zone Research - XXIX, UNSECO: Paris, France, 366.Search in Google Scholar

Beven, K. (1981)Kinematic subsurface stormflow. Water Resour. Res., 17(5), 1419–1424.10.1029/WR017i005p01419Search in Google Scholar

Bickley, W. G. (1941)Formulae for numerical differentiation. Math. Gaz., 25(263), 19–27. doi:10.2307/360647510.2307/3606475Search in Google Scholar

Brutsaert, W. (1994)The unit response of groundwater outflow from a hillslope. Water Resour. Res., 30(10), 2759–2763.10.1029/94WR01396Search in Google Scholar

Boussinesq, J. (1877)Essai Sur la Théorie des Eaux Courantes (Essay on the Theory of Water Flow). Mémoires Présentés par Divers Savants à l’Académie des Sciences, Paris, 23(1), 252–260 [in French].Search in Google Scholar

Chapman, T. G. – Dressler, R. F. (1984)Unsteady shallow ground-water flow over a curved impermeable boundary. Water Resour. Res. 20(10), 1427–1434.10.1029/WR020i010p01427Search in Google Scholar

Chapman, T. G. (2005)Recharge-induced groundwater flow over a plane sloping bed: Solutions for steady and transient flow using physical and numerical models. Water Resour. Res., 41, W07027, doi:10.1029/2004WR003606.10.1029/2004WR003606Search in Google Scholar

Chapman, T. G. – Ong, G. (2006)A new equation for shallow groundwater flow over a curved impermeable boundary: Numerical solutions and laboratory tests. Water Resour. Res., 42, W03427, doi:10.1029/2005WR004437.10.1029/2005WR004437Search in Google Scholar

Daly, E. – Porporato, A. (2004)A note on groundwater flow along a hillslope. Water Resour. Res., 40, W01601, doi:10.1029/2003WR002438.10.1029/2003WR002438Search in Google Scholar

Dupuit, J. (1863) Études Théoriques et Pratiques sur le Mouvement des Eaux dans les Canaux Découverts et a Travers les Terrains Perméables (Theoretical and Practical Studies on Water Movement in Open Channels and across Permeable Terrains). deuxième édition; Dunod: Paris, France, 229–293 [in French].Search in Google Scholar

Fan, Y. – Bras, R. L. (1998)Analytical solutions to hillslope subsurface storm flow and saturation overland flow. Water Resour. Res., 34(4), 921–927.10.1029/97WR03516Search in Google Scholar

Fenton, J. D. (1990)Calculating seepage flow with a free surface: Some old methods and some new ones. In: Proceedings of the Groundwater and Seepage Symposium, The Institution of Professional Engineers, Auckland University, New Zealand, 24-25 May, 16(1), 31–36.Search in Google Scholar

Gottlieb, D. – Türkei, E. (1976)Dissipative two-four methods for time-dependent problems. Math. Comp., 30(136), 703–723.10.1090/S0025-5718-1976-0443362-6Search in Google Scholar

Gustafsson, B. (1975)The convergence rate for difference approximations to mixed initial boundary value problems. Math. Comp., 29(130), 396–406.10.1090/S0025-5718-1975-0386296-7Search in Google Scholar

Hilberts, A. G. J. – von Loon, E. E. – Troch, P. A. – Paniconi, C. (2004)The hillslope-storage Boussinesq model for non-constant bedrock slope. J. Hydrol. 291, 160–173.10.1016/j.jhydrol.2003.12.043Search in Google Scholar

Hilberts, A. G. J. (2006)Low-Dimensional Modeling of Hillslope Subsurface Flow Processes: Developing and Testing the Hillslope-Storage Boussinesq Model. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands.Search in Google Scholar

Ibrahim, H. A. – Brutsaert, W. (1965)Inflow hydrographs from large unconfined aquifers. J. Irrig. Drain. Div., 91(2), 21–38.10.1061/JRCEA4.0000361Search in Google Scholar

Oliger, J. (1974)Fourth-order difference methods for the initial boundary-value problem for hyperbolic equations. Math. Comp., 28(125), 15–25.10.1090/S0025-5718-1974-0359344-7Search in Google Scholar

Polyanin, A. D. – Manzhirov, A. V. (2007)Handbook of Mathematics for Engineers and Scientists. Chapman and Hall/CRC, Taylor and Francis Group, Boca Raton, FL, USA, 353–354.Search in Google Scholar

Saha, G. C. (2009)Experimental and Numerical Analysis of Ground-water–Surface Water Interaction in Horizontal and Sloping Un-confined Aquifers. Master’s Thesis, Auburn University, Auburn, AL, USA.Search in Google Scholar

Sanford, W. E. – Parlange, J. Y. – Steenhuis, T. S. (1993)Hillslope drainage with sudden drawdown: Closed form solution and laboratory experiments. Water Resour. Res., 29(7), 2313–2321.10.1029/93WR00515Search in Google Scholar

Su, N. (1994)A formula for computation of time-varying recharge of groundwater. J. Hydrol., 160(1-4), 123–135.10.1016/0022-1694(94)90037-XSearch in Google Scholar

Tritscher, P. – Read, W. W. – Broadbridge, P. (2000)Specific yield for a two-dimensional flow. Water Resour. Res., 36(6), 1393–1402.10.1029/1999WR900333Search in Google Scholar

Troch, P. A. – van Loon, E. E. – Hilberts, A. G. J. (2002)Analytical solutions to a hillslope-storage kinematic wave equation for sub-surface flow. Adv. Water Resour., 25, 637–649.Search in Google Scholar

Troch, P. A. – Paniconi, C. – van Loon, E. E. (2003)Hillslope-storage Boussinesq model for subsurface flow and variable source areas along complex hillslopes: 1. Formulation and characteristic response. Water Resour. Res., 39(11), 1316, doi:10.1029/2002WR001728.10.1029/2002WR001728Search in Google Scholar

Troch, P. A. – et al. (2013)The importance of hydraulic groundwater theory in catchment hydrology: The legacy of Wilfried Brutsaert and Jean-Yves Parlange. Water Resour. Res., 49, 5099–5116.Search in Google Scholar

Verhoest, N. E. C. – Troch, P. A. (2000)Some analytical solutions of the linearized Boussinesq equation with recharge for a sloping aquifer. Water Resour. Res., 36(3), 793–800.10.1029/1999WR900317Search in Google Scholar

Verma, R. D. – Brutsaert, W. (1970)Unconfined aquifer seepage by capillary flow theory. J. Hydr. Div., 96(HY6), 1331–1344.10.1061/JYCEAJ.0002516Search in Google Scholar

Verma, R. D. – Brutsaert, W. (1971)Similitude criteria for flow from unconfined aquifers. J. Hydr. Div., 97(HY9), 1493–1509.10.1061/JYCEAJ.0003075Search in Google Scholar

Zerihun, Y. T. (2018)Extension of the Dupuit–Forchheimer model for non-hydrostatic flows in unconfined aquifers. Fluids, 3(2), http://dx.doi.org/10.3390/fluids3020042.10.3390/fluids3020042Search in Google Scholar

Zijl, W. – Nawalany, M. (1993)Natural Groundwater Flow. Lewis Publishers, Boca Raton, FL, USA, 69–83.Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo