1. bookVolume 75 (2021): Issue 3 (June 2021)
14 Sep 2008
6 Hefte pro Jahr
access type Open Access

Immediate Effects of Prescribed Burning on Soil Mite (Acari: Oribatida) Communities in a Scots Pine (Pinus Sylvestris) Forest, Latvia

Online veröffentlicht: 22 Jul 2021
Seitenbereich: 220 - 228
Eingereicht: 16 Dec 2020
Akzeptiert: 12 Mar 2021
14 Sep 2008
6 Hefte pro Jahr

Anonymous (2005). International Organization of Standartization. Soil quality – Determination of pH, ISO 10390:2005. International stage code: 90.93 (2010-01-05). Search in Google Scholar

Anonymous (2019). RStudio: Integrated Development for R. RStudio Team. http://www.rstudio.com/ (accessed 10.10.2020). Search in Google Scholar

Auclerc, A., Le Moine, J. M., Hatton, P. J., Bird, J. A., Nadelhoffer, J. (2019). Decadal post-fire succession of soil invertebrate communities is dependent on the soil surface properties in a northern temperate forest. Sci. Total Environ., 647, 1058–1068. Search in Google Scholar

Bååth, E., Arnebrant, K. (1993). Microfungi in coniferous forest soil treated with lime or wood ash. Biol. Fertility Soils, 15, 91–95. Search in Google Scholar

Barrios, E. (2007). Soil biota, ecosystem services and land productivity. Ecol. Econ., 64 (2), 269–285. Search in Google Scholar

Bengtsson, J. (2002). Disturbance and resilience in soil animal communities. Eur. J. Soil Biol., 38, 119–125. Search in Google Scholar

Bengtsson, J., Nilsson, G. S., Franc, A., Menozzi, P., (2000). Biodiversity, disturbances, ecosystem function and management of European forests. Forest Ecol. Manag., 132, 39–50. Search in Google Scholar

Bormann, B., Homann, P. S., Darbyshire, R. L., Morrissete, B. A. (2008). Intense forest wildfire sharply reduces mineral soil C and N: The first direct evidence. Canad. J. Forest Res., 38 (11), 2771–2783. Search in Google Scholar

Braun-Blanquet, J. (1964). Pflanzensoziologie, Grundzüge der Vegetationskunde. 3rd edition. Springer-Verlag, Berlin. 865 S. (in German). Search in Google Scholar

Capinera, J. L. (2006). Encyclopaedia of Entomology. Vol. 2, F – O. Springer, Dordrecht. 1617 pp. Search in Google Scholar

Cerdà, A. (1999). Parent material and vegetation affect soil erosion in Eastern Spain. Soil Sci. Soc. Amer. J., 63 (2), 362–368. Search in Google Scholar

Certini, G. (2005). Effects of fire on properties of forest soils: A review. Oecologia, 143, 1–10. Search in Google Scholar

Clarke, K. R., Warwick, R. M. (2001). Changes in Marine Communities: An Approach to Statistical Analysis and Interpretation. 2nd edition. Primer-E Ltd, Plymouth. 176 pp. Search in Google Scholar

Crossley, D. A., Hansen, R. A. Jr., Lamoncha, K. L. (1997). Response of forest floor microarthropods to a forest regeneration burn at Wine Spring Watershed (southern Appalachians). In: Proceedings of the 1st Biennial North American Forest Ecology Workshop, 24–27 June 1997, Raleigh, North Carolina. Institute of Ecology, University of Georgia, Raleigh, pp. 1–15. Search in Google Scholar

Cruz-Paredes, C., Wallander, H., Kj¸ller, R., Rousk, J. (2017). Using community trait-distributions to assign microbial responses to pH changes and Cd in forest soils treated with wood ash. Soil Biol. Biochem., 112, 153–164. Search in Google Scholar

Dhooria, M. S. (2016). Fundamentals of Applied Acarology. Springer Nature, Singapore. 470 pp. Search in Google Scholar

Dindal, D. L. (1990). Soil Biology Guide. University of New Hapshive, Durham. 1980 pp. Search in Google Scholar

Donis, J., Kitenberga, M., Snepsts, G., Matisons, R., Zarins, J., Jansons, A. (2017). The forest fire regime in Latvia during 1922–2014. Silva Fennica, 51 (5), DOI: 10.14214/sf.7746 Search in Google Scholar

Dunger, W., Fiedler, H. J. (1997). Methoden der Bodenbiologie. Gustav Fischer Verlag Jena, Villengang. 539 S. Search in Google Scholar

Eisenbeis, G. (2006). Biology of Soil Invertebrates. In: Konig, H., Varma A. (eds.). Intestinal Microorganisms of Termites and other Invertebrates. Springer-Verlag, Berlin, pp. 3–53. Search in Google Scholar

Engelmann, H. D. (1978). Zur Dominanzklassifizierung von Bodenarthropoden. Pedobiologia, 18, 378–380. Search in Google Scholar

Fowler, J., Cohen, L., Jarvis, P. (1998). Practical Statistics for Field Biology. Second Edition. John Wiley & Sons Ltd., Chichester. 254 pp. Search in Google Scholar

George, P. B. L., Keith, A. M., Creer, S., Barrett, G. L., Lebron, I., Emmet, B. A., Robinson, D. A., Jones, D. L. (2017). Evaluation of mesofauna communities as soil quality indicators in a national-level monitoring programme. Soil Biol. Biochem., 115, 537–546. Search in Google Scholar

Gongalsky, K. B., Malmström, A., Zaitsev, A. S., Shakhab, S. V., Bengtsson, J., Persson, T. (2012). Do burned areas recover from inside? An experiment with soil fauna in a heterogeneous landscape. Appl. Soil Ecol., 59, 73–86. Search in Google Scholar

Grabczyńska, O., Olejniczak, I., Prædecka, A., Russel, S. (2009). Short-term effects of prescribed forest fire on soil mites (Acari). Polish J. Ecol., 57 (4), 805–809. Search in Google Scholar

Hågvar, S. (1987). Why do collemboles and mites react to changes in soil acidity? Entomologiske Meddelelser, 55, 115–119. Search in Google Scholar

Hågvar, S., Amundsen, T. (1981). Effects of liming and artificial acid rain on the mite (Acari) fauna in coniferous forest. Oikos, 37 (1), 7–20. Search in Google Scholar

Hammen, L. (1980). Glossary of Acarological Terminology. Dr. W. Junk Publishers, Hague. 284 pp. Search in Google Scholar

Hansen, M., Bang-Andreasen, T., S¸rensen, H., Ingerslev, M. (2017). Micro vertical changes in soil pH and base cations over time after application of wood ash on forest soil. Forest Ecol. Manag., 406, 274–280. Search in Google Scholar

Henig-Sever, N., Poliakov, D., Broza, M. (2001). A novel method for estimation of wildfire intensity based on ash pH and soil microarthropod community. Pedobiologia, 45, 98–106. Search in Google Scholar

Hutchins, M. W., Reynolds, B. C., Patch, S. P. (2011). Prescribed fire and the abundance of soil microarthropods in Northeast Georgia. Southeastern Naturalist, 10 (3), 489–500. Search in Google Scholar

Johnstone, J. F., Chapin, F. S. (2006). Effects of soil burn severity on post–fire tree recruitment in boreal forest. Ecosystems, 9, 14–31. Search in Google Scholar

Kagainis. U., Cera I., Juceviča E., Karpa A., Salmane I., Saulītis J., Spuņģis V., Telnov D., Melecis V., Jankevica L. (2020). The importance and potential value of a regional midsize arthropod collection: An example of IBULC. Int. J. Inclusive Museum, 13 (3), 45–77. Search in Google Scholar

Kamczyc, J., Urbanowski, C., Pers-Kamczys, E. (2017). Mite communities (Acari: Mesostigmata) in young and mature coniferous forests after surface wildfire. Exper. Appl. Acarology, 72, 145–160. Search in Google Scholar

Kim, J. W., Jung, C. (2008). Abundance of soil microarthropods associated with forest fire severity in Samcheok, Korea. J. Asia–Pacific Entomol., 11, 77–81. Search in Google Scholar

Kim, J., Jung, C. (2013). Ecological resilience of soil oribatid mite communities after the fire disturbance. J. Ecol. Environ., 36 (2), 117–123. Search in Google Scholar

Kirby, K. J., Watkins, C. (2015). Europe’s Changing Woods and Forests: From Wildwood to Managed Landscapes. CABI publishing, Oxfordshire. 363 pp. Search in Google Scholar

Krantz, G. W., Walter, D. E. (2009). A Manual of Acarology. Third Edition. Texas Tech University Press, Texas. 807 pp. Search in Google Scholar

Kruskal, J. B. (1964). Nonmetric multidimensional scaling: a numerical method. Psychometrika, 29, 115–129. Search in Google Scholar

Kudryasheva, I. V., Laskova, L. M. (2002). Oribatid mites (Acariformes, Oribatei) as an index of postpyrogenous changes in podzol and peat soils of boreal forests. Biol. Bull., 29 (1), 92–99. Search in Google Scholar

Larroulet, M. S., Hepper, E. N., Alvarez Redondo, M. P., Belmonte, V., Urioste, A. M. (2016). The Caldenal ecosystem: Effects of prescribed fire on soil chemical properties. Arid Land Res. Manag., 30 (1), 105–119. Search in Google Scholar

Lepš, J., Šmilauer, P. (2003). Multivariate Analysis of Ecological Data Using CANOCO. Cambridge University Press, Cambridge. 284 pp. Search in Google Scholar

Liiri, M., Haimi, J., Settälä, H. (2002). Community composition of soil microarthropods of acid forest soils as affected by wood ash application. Pedobiologia, 46, 108–124. Search in Google Scholar

Lóšková, J., Luptáčik, P., Miklisová, D., Kováč, L. (2013). The effect of clear-cutting and wildfire on soil Oribatida (Acari) in windthrown stands of the High Tatra Mountains (Slovakia). Eur. J. Soil Biol., 55, 131–138. Search in Google Scholar

Malmström, A. (2006). Effects of wildfire and prescribed burning on soil fauna in boreal coniferous forests. PhD dissertation, Swedish University of Agricultural Sciences, Uppsala, Sweden. 35 pp. Search in Google Scholar

Malmström, A. (2008). Temperature tolerance in soil microarthropods: Simulation of forest-fire heating in the laboratory. Pedobiologia, 51, 419–426. Search in Google Scholar

Malmström, A. (2010). The importance of measuring fire severity: Evidence from microarthropod studies. Forest Ecol. Manag., 260, 62–70. Search in Google Scholar

McCune, B., Mefford, M. J. (1999). PC-ORD. Multivariate Analysis of Ecological Data. Version 4.0. MjM Software, Oregon. 237 pp. Search in Google Scholar

Migliorini, M., Pigino, G., Avanzati, A. M., Salomone, N., Bernini, F. (2004). Experimental fires in a Mediterranean environment: Effects on Oribatid mite communities. Phytophaga, 14, 271–277. Search in Google Scholar

Murvanidze, M., Arabuli, T., Kvavadze, E. R., Mumladze, L. (2008). The effect of fire disturbance on oribatid mite communities. In: Integrative Acarology. Proceedings of the 6th European Congress. 21–25 July, 2008, Montpellier. European Association of Acarologists, Montpellier, pp. 216–221. Search in Google Scholar

Nakamura, Y. N., Gotoh, T. (2009). Comparative ultrastructural observation of the cuticle and muscle of an enchytraeid (Enchytraeus japonensis) and an oribatid species (Tectocepheus velatus) using transmission electron microscopy. J. Faculty Agricult. Kyushu Univ., 54 (1), 97–101. Search in Google Scholar

Nardi, J. B. (2007). Life in the Soil. The University of Chicago Press, Chicago. 293 pp. Search in Google Scholar

Nielsen, U. N., Osler, G. H. R., Campbell, C. D., Neilson, R., Burslem, D. F. R. P., van der Wal, R. (2010). The enigma of soil animal species diversity revisited: The role of small-scale heterogeneity. PloS ONE, 5 (7), e11567. Search in Google Scholar

Olejniczak, I., Górska, E. B., Prædecka, A., Hewelke, E., Gozdowski, D., Korc, M., Panek, E., Tyburski, L., Skawińska, M., Oktaba, M., Boniecki,, P., Kondras M., Oktaba, L. (2019). Selected biological properties of the soil in a burnt-out area under old pine trees three years after a fire. Middle Pomeranian Scientific Society of the Environment Protection, 21, 1279–1293. Search in Google Scholar

Parisi, V., Menta, C., Gardi, C., Jacomini, C., Mozzanica, E. (2005). Microarthropod communities as a tool to assess soil quality and biodiversity: A new approach in Italy. Agricult. Ecosyst. Environ., 105, 323–333. Search in Google Scholar

Parsons, A., Robichaud, P. R., Lewis, S. A., Napper, C., Clark, J. T. (2010). Field Guide for Mapping Post-Fre Soil Burn Severity. United States Department of Agriculture, Rocky Mountains Reasearch Station. 49 pp. Search in Google Scholar

Parviainen, J. (1996). The impact of fire on Finnish forests in the past and today. Silva Fennica, 30 (2–3), 353–359. Search in Google Scholar

Pastro L. A., Dickman, C. R., Letnic, M. (2011). Burning for biodiversity or burning biodiversity? Prescribed burn vs. wildfire impacts on plants, lizards, and mammals. Ecol. Appl., 21 (8), 3238–3253. Search in Google Scholar

Perdomo, G., Evans A., Maraun, M., Sunnucks, P., Thompson, R. (2012). Mouthpart morphology and trophic position of microarthropods from soils and mosses are strongly correlated. Soil Biol. Biochem., 53, 56–63. Search in Google Scholar

Rove, I. (Ed.) (2008). Nature Management Plan for Protected Landscape Area “Ādaži” [Aizsargājamo ainavu apvidus “Ādaži” dabas aizsardzības plāns]. Latvijas Dabas fonds, Rīga. 122 lpp. (in Latvian). Search in Google Scholar

Ryan, K. C. (2002). Dynamic interactions between forest structure and fire behavious in boreal ecosystems. Silva Fennica, 36 (1), 13–39. Search in Google Scholar

Saifutdinov, R. A., Gongalsky, K. B., Zaitsev, A. S. (2018). Evidence of a trait-specific response to burning in springtails (Hexapoda: Collembola) in the boreal forests of European Russia. Geoderma, 332, 173–179. Search in Google Scholar

Scheinost, A. C., Sinowski, W., Auerswald, K. (1997). Regionalization of soil buffering functions: A new concept applied to K/Ca exchange curves. Adv. GeoEcol., 30, 23–38. Search in Google Scholar

Schimmel, J., Granström, A. (1996). Fire severity and vegetation response in the boreal Swedish forest. Ecology, 77 (5), 1436–1450. Search in Google Scholar

Schneider, K., Maraun, M. (2005). Feeding preferences among dark pigmented fungi (“Damatiacea”) indicate trophic niche differentiation of oribatid mites. Pedobiologia, 49, 61–67. Search in Google Scholar

Southwood, T. R. E., Henderson, P. A. (2000). Ecological Methods. Third edition. Blackwell Science Ltd., London. 575 pp. Search in Google Scholar

Stamou, G. P., Asikidis, M. D., Argyropoulou, M. D., Sgardelis, S. P. (1993). Ecological time versus standard clock time: The asymmetry of phenologies and the life history strategies of some soil arthropods from Mediterranean ecosystems. Oikos, 66 (1), 27–35. Search in Google Scholar

Stefaniak, O., Seniczak, S. (1981). The effect of fungal diet on the development of Oppia nitens (Acari, Oribatei) and on the microflora of its alimentary tract. Pedobiologia, 21, 202–210. Search in Google Scholar

Tyurin, I. V. (1951). Analytical procedure for a comparative study of soil humus. Scientific Works of V.V. Dokuchaev Soil Science Institute [Тюрин, И. В. К методике анализа для сравнительного изучения состава почвенного перегноя или гумуса. Ттр. Почв, ин-ша им В.В. Докучаева], 33a, 5–21. Search in Google Scholar

Villegas, J. C., Breshears, D. D., Zou, C. B., Law, D. J. (2010). Ecohydrological controls of soil evaporation in deciduous drylands: How the hierarchical effects of litter, patch and vegetation mosaic cover interact with phenology and season. J. Arid Environ., 74 (5), 595–602. Search in Google Scholar

Walter, D. E., Proctor, H. C. (1999). Mites: Ecology, Evolution & Behavior. CABI publishing, New York. 322 pp. Search in Google Scholar

Wehner, K., Norton, R. A., Blüthgen, N., Heethoff, M.. (2016). Specialization of oribatid mites to forest microhabitats — the enigmatic role of litter. Ecosphere, 7 (3), e01336. Search in Google Scholar

Weigmann, G. (2006). Hornmilben (Oribatida). Die Tierwelt Deutshclands, Bd. 76. Goecke & Evers, Keltern. 520 S. (in German). Search in Google Scholar

Wikars, L. O., Schimmel, J., (2001). Immediate effects of fire-severity on soil invertebrates in cut and uncut pine forests. Forest Ecol. Manag., 141, 189–200. Search in Google Scholar

Zaitsev, A. S., Gongalsky, K. B., Malmström, A., Persson, T., Bengtsson, J. (2016). Why are forest fires generally neglected in soil fauna research? A mini-review. Appl. Soil Ecol., 98, 261–271. Search in Google Scholar

Zaitsev, A. S., Gongalsky, K. B., Persson, T., Bengtsson, J. (2014). Connectivity of litter islands remaining after a fire and unburnt forest determines the recovery of soil fauna. Appl. Soil Ecol., 83, 101–108. Search in Google Scholar

Zaitsev A. S., van Straalen, N. M. (2001). Species diversity and metal accumulation in oribatid mites (Acari, Oribatida) of forests affected by a metal-lurgical plant. Pedobiologia, 45, 467–479. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo