1. bookVolume 2021 (2021): Issue 4 (October 2021)
Zeitschriftendaten
License
Format
Zeitschrift
Erstveröffentlichung
16 Apr 2015
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
access type Open Access

Gage MPC: Bypassing Residual Function Leakage for Non-Interactive MPC

Online veröffentlicht: 23 Jul 2021
Seitenbereich: 528 - 548
Eingereicht: 28 Feb 2021
Akzeptiert: 16 Jun 2021
Zeitschriftendaten
License
Format
Zeitschrift
Erstveröffentlichung
16 Apr 2015
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch

[1] Altcoin.io decentralized exchange. https://altcoin.io/ Search in Google Scholar

[2] Etherdelta decentralized exchange. https://etherdelta.com/ Search in Google Scholar

[3] Etheropt decentralized exchange (mirror of original software). https://github.com/destenson/etheropt--etheropt.github.io Search in Google Scholar

[4] Intrinsically tradable tokens. https://github.com/o0ragman0o/ITT Search in Google Scholar

[5] Ren: A privacy preserving virtual machine powering zero-knowledge financial applications. https://renproject.io/litepaper.pdf Search in Google Scholar

[6] Solidity by example: Blind auction. https://solidity.readthedocs.io/en/v0.5.3/solidity-by-example.html#id2 Search in Google Scholar

[7] Almashaqbeh, G., Benhamouda, F., Han, S., Jaroslawicz, D., Malkin, T., Nicita, A., Rabin, T., Shah, A., Tromer, E.: Gage mpc: Bypassing residual function leakage for non-interactive mpc. Cryptology ePrint Archive, Report 2021/256 (2021), https://eprint.iacr.org/2021/256 Search in Google Scholar

[8] Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Secure multiparty computations on bitcoin. In: 2014 IEEE Symposium on Security and Privacy. pp. 443–458. IEEE Computer Society Press (May 2014) Search in Google Scholar

[9] Beimel, A., Gabizon, A., Ishai, Y., Kushilevitz, E., Meldgaard, S., Paskin-Cherniavsky, A.: Non-interactive secure multiparty computation. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 387–404. Springer, Heidelberg (Aug 2014) Search in Google Scholar

[10] Bellare, M., Goldwasser, S.: Encapsulated key escrow. Tech. rep., Cambridge, MA, USA (1996) Search in Google Scholar

[11] Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation (extended abstract). In: 20th ACM STOC. pp. 1–10. ACM Press (May 1988) Search in Google Scholar

[12] Benhamouda, F., Krawczyk, H., Rabin, T.: Robust noninteractive multiparty computation against constant-size collusion. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp. 391–419. Springer, Heidelberg (Aug 2017) Search in Google Scholar

[13] Bentov, I., Kumaresan, R.: How to use bitcoin to design fair protocols. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 421–439. Springer, Heidelberg (Aug 2014) Search in Google Scholar

[14] Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS, vol. 10991, pp. 757–788. Springer, Heidelberg (Aug 2018) Search in Google Scholar

[15] Boneh, D., Naor, M.: Timed commitments. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 236–254. Springer, Heidelberg (Aug 2000) Search in Google Scholar

[16] Bowe, S., Chiesa, A., Green, M., Miers, I., Mishra, P., Wu, H.: Zexe: Enabling decentralized private computation. Cryptology ePrint Archive, Report 2018/962 (2018), https://eprint.iacr.org/2018/962.pdf Search in Google Scholar

[17] Brakerski, Z., Döttling, N., Garg, S., Malavolta, G.: Leveraging linear decryption: Rate-1 fully-homomorphic encryption and time-lock puzzles. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019, Part II. LNCS, vol. 11892, pp. 407–437. Springer, Heidelberg (Dec 2019) Search in Google Scholar

[18] Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols (extended abstract). In: 20th ACM STOC. pp. 11–19. ACM Press (May 1988) Search in Google Scholar

[19] Choudhuri, A.R., Goyal, V., Jain, A.: Founding secure computation on blockchains. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part II. LNCS, vol. 11477, pp. 351–380. Springer, Heidelberg (May 2019) Search in Google Scholar

[20] Choudhuri, A.R., Green, M., Jain, A., Kaptchuk, G., Miers, I.: Fairness in an unfair world: Fair multiparty computation from public bulletin boards. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017. pp. 719–728. ACM Press (Oct / Nov 2017) Search in Google Scholar

[21] Cleve, R.: Limits on the security of coin flips when half the processors are faulty (extended abstract). In: 18th ACM STOC. pp. 364–369. ACM Press (May 1986) Search in Google Scholar

[22] DeFiprime.com: Dex tracker - decentralized exchanges trading volume. https://defiprime.com/dex-volume Search in Google Scholar

[23] Deuber, D., Döttling, N., Magri, B., Malavolta, G., Thyagarajan, S.A.K.: Minting mechanism for proof of stake blockchains. In: International Conference on Applied Cryptography and Network Security. pp. 315–334. Springer (2020) Search in Google Scholar

[24] Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In: Brickell, E.F. (ed.) CRYPTO’92. LNCS, vol. 740, pp. 139–147. Springer, Heidelberg (Aug 1993) Search in Google Scholar

[25] Ephraim, N., Freitag, C., Komargodski, I., Pass, R.: Continuous verifiable delay functions. In: Annual International Conference on the Theory and Applications of Cryptographic Techniques. pp. 125–154. Springer (2020) Search in Google Scholar

[26] Feige, U., Kilian, J., Naor, M.: A minimal model for secure computation (extended abstract). In: 26th ACM STOC. pp. 554–563. ACM Press (May 1994) Search in Google Scholar

[27] Feige, U., Shamir, A.: Zero knowledge proofs of knowledge in two rounds. In: Brassard, G. (ed.) CRYPTO’89. LNCS, vol. 435, pp. 526–544. Springer, Heidelberg (Aug 1990) Search in Google Scholar

[28] Garay, J., Kiayias, A., Ostrovsky, R.M., Panagiotakos, G., Zikas, V.: Resource-restricted cryptography: Revisiting mpc bounds in the proof-of-work era. In: Annual International Conference on the Theory and Applications of Cryptographic Techniques. pp. 129–158. Springer (2020) Search in Google Scholar

[29] Garay, J.A., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: Analysis and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 281–310. Springer, Heidelberg (Apr 2015) Search in Google Scholar

[30] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A completeness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th ACM STOC. pp. 218–229. ACM Press (May 1987) Search in Google Scholar

[31] Gordon, S.D., Malkin, T., Rosulek, M., Wee, H.: Multi-party computation of polynomials and branching programs without simultaneous interaction. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 575–591. Springer, Heidelberg (May 2013) Search in Google Scholar

[32] Goyal, R., Goyal, V.: Overcoming cryptographic impossibility results using blockchains. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS, vol. 10677, pp. 529–561. Springer, Heidelberg (Nov 2017) Search in Google Scholar

[33] Halevi, S., Ishai, Y., Jain, A., Komargodski, I., Sahai, A., Yogev, E.: Non-interactive multiparty computation without correlated randomness. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part III. LNCS, vol. 10626, pp. 181–211. Springer, Heidelberg (Dec 2017) Search in Google Scholar

[34] Halevi, S., Lindell, Y., Pinkas, B.: Secure computation on the web: Computing without simultaneous interaction. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 132–150. Springer, Heidelberg (Aug 2011) Search in Google Scholar

[35] Kaptchuk, G., Green, M., Miers, I.: Giving state to the stateless: Augmenting trustworthy computation with ledgers. In: NDSS 2019. The Internet Society (Feb 2019) Search in Google Scholar

[36] Kiayias, A., Zhou, H.S., Zikas, V.: Fair and robust multi-party computation using a global transaction ledger. In: Fischlin, M., Coron, J.S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 705–734. Springer, Heidelberg (May 2016) Search in Google Scholar

[37] Kosba, A.E., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: The blockchain model of cryptography and privacy-preserving smart contracts. In: 2016 IEEE Symposium on Security and Privacy. pp. 839–858. IEEE Computer Society Press (May 2016) Search in Google Scholar

[38] Labs, A.: Idex: A real-time and high-throughput ethereum smart contract exchange. https://idex.market/ Search in Google Scholar

[39] Malavolta, G., Thyagarajan, S.A.K.: Homomorphic time-lock puzzles and applications. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part I. LNCS, vol. 11692, pp. 620–649. Springer, Heidelberg (Aug 2019) Search in Google Scholar

[40] Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. White Paper, https://bitcoin.org/bitcoin.pdf (2008) Search in Google Scholar

[41] Naor, M.: Moderately hard functions: From complexity to spam fighting. In: International Conference on Foundations of Software Technology and Theoretical Computer Science. pp. 434–442. Springer (2003) Search in Google Scholar

[42] Pass, R., Seeman, L., shelat, a.: Analysis of the blockchain protocol in asynchronous networks. In: Coron, J., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part II. LNCS, vol. 10211, pp. 643–673. Springer, Heidelberg (Apr / May 2017) Search in Google Scholar

[43] Peterson, J., Krug, J.: Augur: a decentralized, open-source platform for prediction markets. arXiv preprint arXiv:1501.01042 (2015) Search in Google Scholar

[44] Rabin, T., Ben-Or, M.: Verifiable secret sharing and multi-party protocols with honest majority (extended abstract). In: 21st ACM STOC. pp. 73–85. ACM Press (May 1989) Search in Google Scholar

[45] Rindal, P.: The ivory secure computation runtime. https://github.com/ladnir/Ivory-Runtime, [Online; accessed 2019-10-07] Search in Google Scholar

[46] Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release crypto. Tech. rep., Cambridge, MA, USA (1996) Search in Google Scholar

[47] Warren, W., Bandeali, A.: 0x: An open protocol for decentralized exchange on the ethereum blockchain. https://github.com/0xProject/whitepaper/blob/master/0x_white_paper.pdf Search in Google Scholar

[48] Yao, A.C.C.: Protocols for secure computations (extended abstract). In: 23rd FOCS. pp. 160–164. IEEE Computer Society Press (Nov 1982) Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo