1. bookVolume 2021 (2021): Issue 4 (October 2021)
Zeitschriftendaten
License
Format
Zeitschrift
Erstveröffentlichung
16 Apr 2015
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
access type Open Access

Secure integer division with a private divisor

Online veröffentlicht: 23 Jul 2021
Seitenbereich: 339 - 349
Eingereicht: 28 Feb 2021
Akzeptiert: 16 Jun 2021
Zeitschriftendaten
License
Format
Zeitschrift
Erstveröffentlichung
16 Apr 2015
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch

[1] M. Abspoel, A. Dalskov, D. Escudero, and A. Nof. An efficient passive-to-active compiler for honest-majority MPC over rings. Cryptology ePrint Archive, Report 2019/1298, 2019. https://eprint.iacr.org/2019/1298. Search in Google Scholar

[2] T. Araki, J. Furukawa, Y. Lindell, A. Nof, and K. Ohara. High-throughput semi-honest secure three-party computation with an honest majority. In E. R. Weippl, S. Katzenbeisser, C. Kruegel, A. C. Myers, and S. Halevi, editors, ACM CCS 2016, pages 805–817, Oct. 2016. 10.1145/2976749.2978331. Search in Google Scholar

[3] M. Atallah, M. Bykova, J. Li, K. Frikken, and M. Topkara. Private collaborative forecasting and benchmarking. In Proceedings of the ACM Workshop on Privacy in an Electronic Society, pages 103–114, 2004. Search in Google Scholar

[4] P. Bogetoft, D. L. Christensen, I. Damgård, M. Geisler, T. Jakobsen, M. Krøigaard, J. D. Nielsen, J. B. Nielsen, K. Nielsen, J. Pagter, M. Schwartzbach, and T. Toft. Secure multiparty computation goes live. In Financial Cryptography and Data Security, volume 5628, pages 325–343. Springer-Verlag, 2009. Search in Google Scholar

[5] P. Bunn and R. Ostrovsky. Secure two-party k-means clustering. In Proceedings of the 14th ACM Conference on Computer and Communications Security, pages 486–497, USA, 2007. Search in Google Scholar

[6] O. Catrina and S. de Hoogh. Improved primitives for secure multiparty integer computation. In International Conference on Security and Cryptography for Networks (SCN), volume 6280 of Lecture Notes in Computer Science, pages 182–199, 2010. Search in Google Scholar

[7] O. Catrina and A. Saxena. Secure computation with fixed-point numbers. In Financial Cryptography and Data Security, volume 6052 of Lecture Notes in Computer Science, pages 35–50, Berlin /Heidelberg, 2010. Springer. Search in Google Scholar

[8] M. Dahl, C. Ning, and T. Toft. On secure two-party integer division. In The 16th International Conference on Financial Cryptography and Data Security, 2012. Search in Google Scholar

[9] I. Damgård, M. Fitzi, E. Kiltz, J. B. Nielsen, and T. Toft. Unconditionally secure constant-rounds multi-party computation for equality, comparison, bits and exponentiation. In Proceedings of the third Theory of Cryptography Conference, TCC 2006, volume 3876 of Lecture Notes in Computer Science, pages 285–304. Springer-Verlag, 2006. Search in Google Scholar

[10] I. Damgård, D. Escudero, T. K. Frederiksen, M. Keller, P. Scholl, and N. Volgushev. New primitives for actively-secure MPC over rings with applications to private machine learning. In 2019 IEEE Symposium on Security and Privacy, pages 1102–1120. IEEE Computer Society Press, May 2019. 10.1109/SP.2019.00078. Search in Google Scholar

[11] W. Ding, X. Qian, R. Hu, Z. Yan, and R. H. Deng. Flexible Access Control over Privacy-Preserving Cloud Data Processing, pages 231–255. Springer International Publishing, Cham, 2020. Search in Google Scholar

[12] Z. Erkin, M. Franz, J. Guajardo, S. Katzenbeisser, R. L. Lagendijk, and T. Toft. Privacy-preserving face recognition. In Proceedings of the Privacy Enhancing Technologies Symposium, pages 235–253, Seattle, USA, 2009. Search in Google Scholar

[13] Z. Erkin, T. Veugen, T. Toft, and R. L. Lagendijk. Privacy-preserving user clustering in a social network. In IEEE International Workshop on Information Forensics and Security, 2009. Search in Google Scholar

[14] Z. Erkin, M. Beye, T. Veugen, and I. Lagendijk. Privacy enhanced recommender system. In Thirty-first Symposium on Information Theory in the Benelux, pages 35–42, Rotterdam, 2010. Search in Google Scholar

[15] D. Escudero, S. Ghosh, M. Keller, R. Rachuri, and P. Scholl. Improved primitives for MPC over mixed arithmetic-binary circuits. In Advances in Cryptology - CRYPTO, 2020. Search in Google Scholar

[16] O. Goldreich. Foundations of Cryptography: Basic Applications, volume 2. Cambridge University Press, 2001. Search in Google Scholar

[17] J. Guajardo, B. Mennink, and B. Schoenmakers. Modulo reduction for Paillier encryptions and application to secure statistical analysis. In SPEED’09, Lausanne, Switzerland, sep 2009. Search in Google Scholar

[18] K. Hiwatashi, S. Ohata, and K. Nuida. An efficient secure division protocol using approximate multi-bit product and new constant-round building blocks. In M. Conti, J. Zhou, E. Casalicchio, and A. Spognardi, editors, Applied Cryptography and Network Security, pages 357–376, Cham, 2020. Springer International Publishing. ISBN 978-3-030-57808-4. Search in Google Scholar

[19] T. Jakobsen. Secure multi-party computation on integers. Master Thesis University of Aarhus, Denmark, 2006. Search in Google Scholar

[20] M. Keller. MP-SPDZ: A versatile framework for multi-party computation. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security, CCS ’20, page 1575–1590, New York, NY, USA, 2020. Association for Computing Machinery. Search in Google Scholar

[21] E. Kiltz, G. Leander, and J. Malone-Lee. Secure computation of the mean and related statistics. In Proceedings of Theory of Cryptography Conference, volume 3378 of Lecture Notes in Computer Science, pages 283–302, 2005. Search in Google Scholar

[22] E. Kushilevitz, Y. Lindell, and T. Rabin. Information-theoretically secure protocols and security under composition. IACR Cryptol. ePrint Arch., 2009:630, 2009. URL http://eprint.iacr.org/2009/630. Search in Google Scholar

[23] H. Morita, N. Attrapadung, S. Ohata, K. Nuida, S. Yamada, K. Shimizu, G. Hanaoka, and K. Asai. Secure division protocol and applications to privacy-preserving chi-squared tests. In ISITA2018, October 2018. Search in Google Scholar

[24] M. Naor, B. Pinkas, and R. Summer. Privacy preserving auctions and mechanism design. ACM Conference on Electronic Commerce, pages 129–139, 1999. Search in Google Scholar

[25] S. Rane and W. Sun. Privacy preserving string comparisons based on Levenshtein distance. IEEE Workshop on Information Forensics and Security, December 2010. Search in Google Scholar

[26] A. Sangers, M. van Heesch, T. Attema, T. Veugen, M. Wig-german, J. Veldsink, O. Bloemen, and D. Worm. Secure multiparty pagerank algorithm for collaborative fraud detection. In Financial Cryptography and Data Security, volume 23, February 2019. Search in Google Scholar

[27] G. H. Satsuya Ohata, Hiraku Morita. Accuracy/efficiency trade-off for privacy-preserving division protocol. In ISITA2018, pages 535–539, October 2018. Search in Google Scholar

[28] B. Schoenmakers and P. Tuyls. Efficient binary conversion for Paillier encrypted values. In Advances in Cryptology -EUROCRYPT 2006, volume 4004 of Lecture Notes in Computer Science, pages 522–537. Springer, 2006. Search in Google Scholar

[29] T. Toft. Primitives and Applications for Multi-party Computation. PhD thesis, University of Aarhus, Aarhus, Denmark, 2007. Search in Google Scholar

[30] C. Ugwuoke, Z. Erkin, and R. L. Lagendijk. Secure fixed-point division for homomorphically encrypted operands. In Proceedings of the 13th International Conference on Availability, Reliability and Security, ARES 2018, pages 33:1–33:10. ACM, 2018. Search in Google Scholar

[31] T. Veugen. Encrypted integer division and secure comparison. International Journal of Applied Cryptography, 3, 06/2014 2014. Search in Google Scholar

[32] T. Veugen, R. de Haan, R. Cramer, and F. Muller. A framework for secure computations with two non-colluding servers and multiple clients, applied to recommendations. IEEE Transactions on Information Forensics and Security, 10(3): 445–457, 2015. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo