1. bookVolume 2021 (2021): Issue 4 (October 2021)
Zeitschriftendaten
License
Format
Zeitschrift
Erstveröffentlichung
16 Apr 2015
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
access type Open Access

You May Also Like... Privacy: Recommendation Systems Meet PIR

Online veröffentlicht: 23 Jul 2021
Seitenbereich: 30 - 53
Eingereicht: 28 Feb 2021
Akzeptiert: 16 Jun 2021
Zeitschriftendaten
License
Format
Zeitschrift
Erstveröffentlichung
16 Apr 2015
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch

[1] Esma Aïmeur, Gilles Brassard, José Manuel Fernandez, and Flavien Serge Mani Onana. Privacy-preserving demographic filtering. In Proceedings of ACM SAC 2006, pages 872–878, Dijon, France (April 2006). Search in Google Scholar

[2] Esma Aïmeur, Gilles Brassard, José Manuel Fernandez, and Flavien Serge Mani Onana. Alambic: A privacy-preserving recommender system for electronic commerce. International Journal of Information Security (IJIS), 7(5):307–334, October 2008. Search in Google Scholar

[3] Donald Beaver. Efficient multiparty protocols using circuit randomization. In Advances in Cryptology: Proceedings of CRYPTO 1991, volume 576 of LNCS, pages 420–432, Santa Barbara, CA, USA (August 1991). Search in Google Scholar

[4] Amos Beimel, Yuval Ishai, and Tal Malkin. Reducing the servers’ computation in private information retrieval: PIR with preprocessing. Journal of Cryptology, 17(2):125–151, March 2004. Search in Google Scholar

[5] Robert M. Bell, Yehuda Koren, and Chris Volinsky. The BellKor 2008 solution to the Netflix Prize. Available from: https://www.netflixprize.com/assets/ProgressPrize2008BellKor.pdf, 2008. Search in Google Scholar

[6] Mihir Bellare, Juan A. Garay, and Tal Rabin. Fast batch verification for modular exponentiation and digital signatures. In Advances in Cryptology: Proceedings of EUROCRYPT 1998, volume 1403 of LNCS, pages 236–250, Espoo, Finland (June 1998). Search in Google Scholar

[7] Simon R. Blackburn, Tuvi Etzion, and Maura B. Paterson. PIR schemes with small download complexity and low storage requirements. In Proceedings of ISIT 2017, pages 146–150, Aachen, Germany (June 2017). Search in Google Scholar

[8] Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A framework for fast privacy-preserving computations. In Proceedings of ESORICS 2008, volume 5283 of LNCS, pages 192–206, Málaga, Spain (October 2008). Search in Google Scholar

[9] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing: Improvements and extensions. In Proceedings of CCS 2016, pages 1292–1303, Vienna, Austria (October 2016). Search in Google Scholar

[10] Joseph A. Calandrino, Ann Kilzer, Arvind Narayanan, Edward W. Felten, and Vitaly Shmatikov. “You might also like:” Privacy risks of collaborative filtering. In Proceedings of IEEE S&P 2011, pages 231–246, Berkeley, CA, USA (May 2011). Search in Google Scholar

[11] J. Canny. Collaborative filtering with privacy. In Proceedings 2002 IEEE Symposium on Security and Privacy, pages 45–57, May 2002. Search in Google Scholar

[12] Benny Chor, Niv Gilboa, and Moni Naor. Private information retrieval by keywords. Technical Report CS 0917, Technion-Israel Institute of Technology, Haifa, Israel, February 1997. Search in Google Scholar

[13] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private information retrieval. In Proceedings of FOCS 1995, pages 41–50, Milwaukee, WI, USA (October 1995). Search in Google Scholar

[14] Henry Corrigan-Gibbs, Dan Boneh, and David Mazières. Riposte: An anonymous messaging system handling millions of users. In Proceedings of IEEE S&P 2015, pages 321–338, San Jose, CA, USA (May 2015). Search in Google Scholar

[15] Ivan Damgård, Matthias Fitzi, Eike Kiltz, Jesper Buus Nielsen, and Tomas Toft. Unconditionally secure constant-rounds multi-party computation for equality, comparison, bits and exponentiation. In Proceedings of TCC 2006, volume 3876 of LNCS, pages 285–304, New York, NY, USA (March 2006). Search in Google Scholar

[16] Jack Doerner and abhi shelat. Scaling ORAM for secure computation. In Proceedings of CCS 2017, pages 523–535, Dallas, TX, USA (October–November 2017). ACM. Search in Google Scholar

[17] Rafael Dowsley, Jeroen van de Graaf, Davidson Marques, and Anderson C. A. Nascimento. A two-party protocol with trusted initializer for computing the inner product. In Proceedings of WISA 2010, volume 6513 of LNCS, pages 337–350, Jeju Island, Korea (August 2010). Search in Google Scholar

[18] Wenliang Du and Mikhail J. Atallah. Protocols for secure remote database access with approximate matching. In E-Commerce Security and Privacy (Part II), volume 2 of Advances in Information Security, pages 87–111, February 2001. Search in Google Scholar

[19] Saba Eskandarian, Henry Corrigan-Gibbs, Matei Zaharia, and Dan Boneh. Express: Lowering the cost of metadata-hiding communication with cryptographic privacy. In Proceedings of USENIX Security 2021, Vancouver, BC, Canada (August 2021). Search in Google Scholar

[20] Niv Gilboa and Yuval Ishai. Distributed point functions and their applications. In Advances in Cryptology: Proceedings of EUROCRYPT 2014, volume 8441 of LNCS, pages 640–658, Copenhagen, Denmark (May 2014). Search in Google Scholar

[21] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions. Journal of the ACM (JACM), 33(4):792–807, October 1986. Search in Google Scholar

[22] Ken Goss and Wei Jiang. Efficient and constant-rounds secure comparison through dynamic groups and asymmetric computations. IACR Cryptology ePrint Archive, Report 2018/179, February 2018. Search in Google Scholar

[23] Syed Mahbub Hafiz and Ryan Henry. Querying for queries: Indexes of queries for efficient and expressive IT-PIR. In Proceedings of CCS 2017, pages 1361–1373, Dallas, TX, USA (October–November 2017). Search in Google Scholar

[24] Syed Mahbub Hafiz and Ryan Henry. A bit more than a bit is more than a bit better: Faster (essentially) optimal-rate many-server PIR. Proceedings on Privacy Enhancing Technologies (PoPETS), 2019(4):112–131, January 2019. Search in Google Scholar

[25] F. Maxwell Harper and Joseph A. Konstan. The Movie-Lens datasets: History and context. ACM Transactions on Interactive Intelligent Systems (TiiS), 5(4):Article No. 19, December 2015. Search in Google Scholar

[26] Ryan Henry, Femi Olumofin, and Ian Goldberg. Practical PIR for electronic commerce. In Proceedings of CCS 2011, pages 677–690, Chicago, IL, USA (October 2011). Search in Google Scholar

[27] Ryan Henry and Adithya Vadapalli. dpf++; version 0.0.1 [computer software]. Available from: https://www.github.com/rh3nry/dpfplusplus, July 2019. Search in Google Scholar

[28] Russell Impagliazzo. A personal view of average-case complexity. In Proceedings of Structures 1995, pages 134–147, Minneapolis, MN, USA (June 1995). Search in Google Scholar

[29] Ari Juels. Targeted advertising... and privacy too. In Proceedings of CT-RSA 2001, volume 2020 of LNCS, pages 408–424, San Francisco, CA, USA (April 2001). Search in Google Scholar

[30] Przemys law Kazienko and Micha l Adamski. AdROSA— Adaptive personalization of web advertising. Information Sciences, 177(11):2269–2295, June 2007. Search in Google Scholar

[31] Liisi Kerik, Peeter Laud, and Jaak Randmets. Optimizing MPC for robust and scalable integer and floating-point arithmetic. In Jeremy Clark, Sarah Meiklejohn, Peter Y. A. Ryan, Dan S. Wallach, Michael Brenner, and Kurt Rohloff, editors, Financial Cryptography and Data Security - FC 2016 International Workshops, BITCOIN, VOTING, and WAHC, Christ Church, Barbados, February 26, 2016, Revised Selected Papers, volume 9604 of Lecture Notes in Computer Science, pages 271–287. Springer, 2016. Search in Google Scholar

[32] Christopher M. Kohlhoff. Asio; version 1.14.1 [computer software]. Available from: http://think-async.com/Asio/, August 2019. Search in Google Scholar

[33] Yehuda Koren, Robert M. Bell, and Chris Volinsky. Matrix factorization techniques for recommender systems. IEEE Computer, 42(8):30–37, August 2009. Search in Google Scholar

[34] Toomas Krips and Jan Willemson. Hybrid model of fixed and floating point numbers in secure multiparty computations. IACR Cryptology ePrint Archive, 2014:221, 2014. Search in Google Scholar

[35] Eyal Kushilevitz and Tamer Mour. Sub-logarithmic distributed oblivious RAM with small block size. In Proceedings of PKC 2019 (Part I), volume 11442 of LNCS, pages 3–33, Beijing, China (April 2019). Search in Google Scholar

[36] Valeria Nikolaenko, Stratis Ioannidis, Udi Weinsberg, Marc Joye, Nina Taft, and Dan Boneh. Privacy-preserving matrix factorization. In Proceedings of CCS 2013, pages 801–812, Berlin, Germany (November 2013). Search in Google Scholar

[37] Valeria Nikolaenko, Udi Weinsberg, Stratis Ioannidis, Marc Joye, Dan Boneh, and Nina Taft. Privacy-preserving ridge regression on hundreds of millions of records. In Proceedings of IEEE S&P 2013, pages 334–348, Berkeley, CA, USA (May 2013). Search in Google Scholar

[38] Takashi Nishide and Kazuo Ohta. Multiparty computation for interval, equality, and comparison without bit-decomposition protocol. In Proceedings of PKC 2007, volume 4450 of LNCS, pages 343–360, Beijing, China (April 2007). Search in Google Scholar

[39] Olga Ohrimenko, Felix Schuster, Cédric Fournet, Aastha Mehta, Sebastian Nowozin, Kapil Vaswani, and Manuel Costa. Oblivious multi-party machine learning on trusted processors. In Proceedings of USENIX Security 2016, pages 619–636, Austin, TX, USA (August 2016). Search in Google Scholar

[40] Rafail Ostrovsky and Victor Shoup. Private information storage (Extended abstract). In Proceedings of STOC 1997, pages 294–303, El Paso, TX, USA (May 1997). Search in Google Scholar

[41] Rupa Parameswaran and Douglas M. Blough. Privacy preserving data obfuscation for inherently clustered data. Int. J. Inf. Comput. Secur., 2(1):4–26, 2008. Search in Google Scholar

[42] Vincent Toubiana, Arvind Narayanan, Dan Boneh, Helen Nissenbaum, and Solon Barocas. Adnostic: Privacy preserving targeted advertising. In Proceedings of NDSS 2010, San Diego, CA, USA (February 2010). Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo