1. bookVolumen 59 (2022): Heft 3 (June 2022)
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
2255-8896
Erstveröffentlichung
18 Mar 2008
Erscheinungsweise
6 Hefte pro Jahr
Sprachen
Englisch
Uneingeschränkter Zugang

Technological Assurance of Ti-6Al-4V Parts Produced by Additive Manufacturing Using Selective Metal Laser Sintering

Online veröffentlicht: 23 Jun 2022
Volumen & Heft: Volumen 59 (2022) - Heft 3 (June 2022)
Seitenbereich: 170 - 179
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
2255-8896
Erstveröffentlichung
18 Mar 2008
Erscheinungsweise
6 Hefte pro Jahr
Sprachen
Englisch

1. Donachie, M.J. (2000). Titanium: A technical guide (2nd ed.). Ohio: ASM International, Materials Park.10.31399/asm.tb.ttg2.9781627082693 Search in Google Scholar

2. Cui, C., Hu, B., Zhao, L., & Liu, S. (2011). Titanium Alloy Production Technology, Market Prospects and Industry Development. Mater. Des., 32 (3),1684–1691.10.1016/j.matdes.2010.09.011 Search in Google Scholar

3. Liu, S., & Shin, Y.C. (2019). Additive Manufacturing of Ti6Al4V Alloy: A Review. Materials and Design, 164, 107552, 1–23.10.1016/j.matdes.2018.107552 Search in Google Scholar

4. Bermingham, M.J., Nicastro, L., Kent, D., Chen, Y., & Dargusch, M.S. (2018). Optimising the Mechanical Properties of Ti-6Al-4V Components Produced by Wire + Arc Additive Manufacturing with Postprocess Heat Treatment. J. Alloys Compd., 753, 247–255.10.1016/j.jallcom.2018.04.158 Search in Google Scholar

5. Zhang, J., Wang, X., Paddea, S., & Zhang, X. (2016). Fatigue Crack Propagation Behaviour in Wire + Arc Additive Manufactured Ti-6Al-4V: Effects of Microstructure and Residual Stress. Mater. Des., 90, 551–561.10.1016/j.matdes.2015.10.141 Search in Google Scholar

6. Hönnige, J.R., Colegrove, P.A., Ahmad, B., Fitzpatrick, M.E., Ganguly, S., Lee, T.L., & Williams, S.W. (2018). Residual Stress and Texture Control in Ti-6Al-4V Wire + Arc Additively Manufactured Intersections by Stress Relief and Rolling. Mater. Des., 150, 193–205.10.1016/j.matdes.2018.03.065 Search in Google Scholar

7. Murr, L.E., Gaytan, S.M., Ramirez, D.A., Martinez, E., Hernandez, J., Amato, K.N., … & Wicker, R.B. (2012). Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting Technologies. Journal of Materials Science & Technology, 28, 1–14.10.1016/S1005-0302(12)60016-4 Search in Google Scholar

8. Herzog, D., Seyda, V., Wycisk, E., & Emmelmann, C. (2016). Additive Manufacturing of Metals. Acta Materialia, 117, 371–392.10.1016/j.actamat.2016.07.019 Search in Google Scholar

9. Trapp, J., Rubenchik, A.M., Guss, G., Matthews, M.J. (2017). In Situ Absorptivity Measurements of Metallic Powders during Laser Powder-Bed Fusion Additive Manufacturing. Applied Materials Today, 9, 341–349.10.1016/j.apmt.2017.08.006 Search in Google Scholar

10. Wang, Y.M., Kamath, C., Voisin, T., & Li, Z. (2017). Density Optimization, Microstructure and Mechanical Properties of Ti-6Al-4V Manufactured by Laser Powder-Bed-Fusion. Rapid Prototyping Journal. Lawrence Livermore National Laboratory, LLNL-JRNL-737675. Available at https://www.osti.gov/pages/servlets/purl/1491650 Search in Google Scholar

11. Sandvik Datasheet Osprey. (n.d.). Ti-6Al-4V Powder for Additive Manufacturing. Available at https://www.metalpowder.sandvik/siteassets/metal-powder/datasheets/osprey-ti-6al-4v-grade-5-and-grade-23.pdf Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo