[
[1] Kołakowski P., Wikło M. and Holnicki-Szulc J. (2008): The virtual distortion method-a versatile reanalysis tool for structures and systems.– Structural and Multidisciplinary Optimization, vol.36, No.3, pp.217-234.10.1007/s00158-007-0158-7
]Search in Google Scholar
[
[2] Kirsch U. (2008): Reanalysis of Structures (in Slovak).– Springer Netherlands, pp.93-120.
]Search in Google Scholar
[
[3] Bocko J. (1989): Implementation of an effective reanalysis method.– Journal of Mechanical Engineering, vol.40, No.1, pp.59-67
]Search in Google Scholar
[
[4] Delyová I., Frankovský P., Bocko J., Trebuňa P., Živčák J., Schürger B. and Janigová S. (2021): Sizing and topology optimization of trusses using genetic algorithm.– Materials, vol.14, No.4, p.14, https://doi.org/10.3390/ma14040715.
]Search in Google Scholar
[
[5] Rong F., Chen S.H. and Chen Y.D. (2003): Structural modal reanalysis for topological modifications with extended Kirsch method.– Computer Methods in Applied Mechanics and Engineering, vol.192, No.5-6, pp.697-707.10.1016/S0045-7825(02)00591-1
]Search in Google Scholar
[
[6] Akgün M.A., Garcelon J.H. and Haftka R.T. (2001): Fast exact linear and non-linear structural reanalysis and the Sherman–Morrison–Woodbury formulas.– International Journal for Numerical Methods in Engineering, vol.50, No.7, pp.1587-1606.10.1002/nme.87
]Search in Google Scholar
[
[7] Wu B. and Li Z. (2006): Static reanalysis of structures with added degrees of freedom.– Communications in Numerical Methods in Engineering, vol.22, No.4, pp.269-281.
]Search in Google Scholar
[
[8] Cao H., Li H., Wang M., Huang B. and Sun Y. (2022): A structural reanalysis assisted harmony search for the optimal design of structures.– Computers and Structures, vol.270, Article ID.106844, https://doi.org/10.1016/j.compstruc.2022.106844.
]Search in Google Scholar
[
[9] Huang G., Wang H. and Li G. (2014): A reanalysis method for local modification and the application in large-scale problems.– Structural and Multidisciplinary Optimization, vol.49, No.6, pp.915-930.10.1007/s00158-013-1022-6
]Search in Google Scholar
[
[10] Mo K., Guo D. and Wang H. (2020): Iterative reanalysis approximation-assisted moving morphable component-based topology optimization method.– International Journal for Numerical Methods in Engineering, vol.121, No.22, pp.5101-5122.10.1002/nme.6514
]Search in Google Scholar
[
[11] Materna D. and Kalpakides V.K. (2016): Nonlinear reanalysis for structural modifications based on residual increment approximations.– Computational Mechanics, vol.57, No.1, pp.1-18.10.1007/s00466-015-1209-3
]Search in Google Scholar
[
[12] Wu B., Li Z. and Li S. (2003): The implementation of a vector-valued rational approximate method in structural reanalysis problems.– Computer Methods in Applied Mechanics and Engineering, vol.192, No.13-14, pp.1773-1784.10.1016/S0045-7825(03)00201-9
]Search in Google Scholar
[
[13] Tertel E., Kurylo P. and Papacz W. (2014): The stress state in the three layer open conical shell during of stability loss.– Acta Mechanica Slovaca, vol.18, No.2, pp.56-63.10.21496/ams.2014.020
]Search in Google Scholar
[
[14] Bittnar Z. and Šejnoha J. (1996): Numerical methods in structural mechanics.– Thomas Telford, https://doi.org/10.1061/9780784401705.
]Search in Google Scholar
[
[15] Wu Y., Wang H., Liu J., Zhang S. and Huang H. (2019): A novel dynamic isogeometric reanalysis method and its application in closed-loop optimization problems.– Computer Methods in Applied Mechanics and Engineering, vol.353, pp.1-23.
]Search in Google Scholar
[
[16] Sága M., Vaško M., Handrik M. and Kopas P. (2019): Contribution to random vibration numerical simulation and optimisation of nonlinear mechanical systems.– Scientific Journal of Silesian University of Technology, Series Transport, vol.103, DOI: https://doi.org/10.20858/sjsutst.2019.103.11.
]Search in Google Scholar