[
1. Sabran MR, Jamaluddin R, Abdul Mutalib MS. Screening of aflatoxin M1, a metabolite of aflatoxin B1 in human urine samples in Malaysia: a preliminary study. Food Control 2012; 28:55-58. doi: https://dx.doi.org/10.1016/j.food-cont.2012.04.048
]Search in Google Scholar
[
2. Marchese S, Polo A, Ariano A, Velotto S, Costantini S, Severino L. Aflatoxin B1 and M1: Biological properties and their involvement in cancer development. Toxins (Basel) 2018; 24;10(6):214. doi: https://dx.doi.org/10.3390/toxins1006021410.3390/toxins10060214602431629794965
]Search in Google Scholar
[
3. World Health Organization (WHO). Evaluation of certain contaminants in food (Eighty-third report of the Joint FAO/WHO Expert Committee on Food Additives). WHO Technical Report Series, No.1002 2017. doi: 9789241210027-eng.pdf (991.8Kb)
]Search in Google Scholar
[
4. Fitzgerald M, Heinrich M, Booker A. Medicinal plant analysis: a historical and regional discussion of emergent complex techniques. Front Pharmacology 2020; 9; 10:1480. doi: https://dx.doi.org/10.3389/fphar.2019.0148010.3389/fphar.2019.01480696218031998121
]Search in Google Scholar
[
5. Rasheed T, Bilal M, Li C, Nabeel F, Khalid M, Iqbal HMN. Catalytic potential of bio-synthesized silver nanoparticles using Convolvulus arvensis extract for the degradation of environmental pollutants. J Photochem Photobiol B 2018; 181:44–52. doi: https://dx.doi.org/10.1016/j.jphotobiol.2018.02.02410.1016/j.jphotobiol.2018.02.02429499463
]Search in Google Scholar
[
6. Raveendran P, Fu J, Wallen SL. Completely “Green” synthesis and stabilization of metal nanoparticles. J Am Chem Soc 2003; 125(46):13940–13941. doi: https://dx.doi.org/10.1021/ja029267j10.1021/ja029267j14611213
]Search in Google Scholar
[
7. Barkat MA, Beg S, Naim MJ, Pottoo FH, Singh SP. Current progress in synthesis, characterization, and applications of silver nanoparticles: precepts and prospects. Recent Pat Antiinfect Drug Discov 2018; 13(1):53–69. doi: https://dx.doi.org/10.2174/1574891X1266617100610283310.2174/1574891X1266617100610283328990540
]Search in Google Scholar
[
8. Viljoen AM, Moola A, van Vuuren SF, Van Zyl RI, Baser KHC. The biological activity and essential oil composition of 17 Agathosma (Rutaceae) species. J Essent Oil Res 2006; 18:2–16. doi: https://dx.doi.org/10.1080/10412905.2006.1206711210.1080/10412905.2006.12067112
]Search in Google Scholar
[
9. Posthumous MA, Van Beek TA, Collins NF, Graven EF. Chemical composition of the essential oil of Agathosma betulina, A. crenulata and an A. betulina × crenulata hybrid (Buchu). J Essent Oil Res 1996; 8:223–228. doi: https://dx.doi.org/10.1080/10412905.1996.970060610.1080/10412905.1996.9700606
]Search in Google Scholar
[
10. Dean JA. Analytical Chemistry Handbook, McGraw-Hill, Inc., New York 1995. doi: https://dx.doi.org/10.9780071410601,0071410600
]Search in Google Scholar
[
11. Otero DM, Oliveira FM, Lorini A, da Fonseca Antunes B. Oleuropein: Methods for extraction, purifying and applying. Revista Ceres 2020; 67(4):315-329. doi: https://dx.doi.org/10.1590/0034-737x20206704000910.1590/0034-737x202067040009
]Search in Google Scholar
[
12. Ojha S, Sett A, Bora U. Green synthesis of silver nanoparticles by Ricinus communis var. carmencita leaf extract and its antibacterial study. Advances in Natural Sciences: Nanoscience and Nanotechnology 2017; 8(3):035009.
]Search in Google Scholar
[
13. Krishnadhas L, Santhi R, Annapurani S. Green synthesis of silver nanoparticles from the leaf extract of Volkameria inermis. International Journal of Pharmaceutical and Clinical Research 2017; 9(8):610-616. doi: https://dx.doi.org/10.25258/ijpcr.v9i08.958710.25258/ijpcr.v9i08.9587
]Search in Google Scholar
[
14. Dimitrijevic R, Cvetkovic O, Miodragović Z, Simic M, Manojlović D, Jovic V. SEM/EDX and XRD characterization of silver nanocrystalline thin film prepared from organometallic solution precursor. J Min Metall Sect B-Metall 2013; 49(1):91-95. doi: https://dx.doi.org/10.2298/JMMB120111041D10.2298/JMMB120111041D
]Search in Google Scholar
[
15. Barrera-Necha LL, Correa-Pacheco ZN, Bautista-Baños S, Hernández-López M, Eduardo Martínez Jiménez J, Frida Morán Mejía A. Synthesis and characterization of chitosan nanoparticles loaded botanical extracts with antifungal activity on Colletotrichum gloeosporioides and Alternaria species. Advances in Microbiology 2018; 8.4. doi: https://dx.doi.org/10.4236/aim.2018.8401910.4236/aim.2018.84019
]Search in Google Scholar
[
16. Philip D, Unni C, Aromal SA, Vidhu VK, Koenigii M. Leaf-assisted rapid green synthesis of silver and gold nanoparticles. Spectrochimica Acta Part A 2011; 78:899-904. doi: https://dx.doi.org/10.1016/j.saa.2010.12.06010.1016/j.saa.2010.12.06021215687
]Search in Google Scholar
[
17. Shtayeh MSA, Abu-Ghdeib SI. Antifungal activity of plant extract against dermatophytes. J Mycoses 1999; 42:665-672. doi: https://dx.doi.org/10.1046/j.1439-0507.1999.00499.x10.1046/j.1439-0507.1999.00499.x10680445
]Search in Google Scholar
[
18. Joshi DD. Spectroscopy: herbal drugs and fingerprints. Chapter length: 20 pages. Herbal Drugs and Fingerprints 2012; 101-120. doi: https://dx.doi.org/10.1007/978-81-322-0804-4_610.1007/978-81-322-0804-4_6
]Search in Google Scholar
[
19. Bhawana BR, Buttar HS, Jain VK, Jain N. Curcumin nanoparticles: preparation, characterization, and antimicrobial study. J Agric Food Chem 2011; 59(5):2056-2061. doi: https://dx.doi.org/10.1021/jf104402t10.1021/jf104402t21322563
]Search in Google Scholar
[
20. Ozgur C, Kleckner M, Yang Li. Selection of statistical software for solving big data problems: A guide for businesses, students and universities 2015. doi: https://dx.doi.org/10.1177/215824401558437910.1177/2158244015584379
]Search in Google Scholar
[
21. Aljabali AAA, I Akkam Y, Al-Zoubi MS, Al-Batayneh KM, Al-Trad B, Abo Alrob O et al. Synthesis of gold nanoparticles using leaf extract of Ziziphus zizyphus and their antimicrobial activity. Nanomaterials J 2018; 8(3):174-188. doi: https://dx.doi.org/10.3390/nano803017410.3390/nano8030174586966529562669
]Search in Google Scholar
[
22. Mittal AK, Chisti Y, Chand Banerjee U. Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 2013; 31(2):346-56. doi: https://dx.doi.org/10.1016/j.biotechadv.2013.01.00310.1016/j.biotechadv.2013.01.00323318667
]Search in Google Scholar
[
23. Du J, Zhou Z, Zhang X, Wu S. Biosynthesis of gold nanoparticles by flavonoids from Lilium casa blanca. Journal of Cluster Science 2017; 28(6). doi: https://dx.doi.org/10.1007/s10876-017-1282-110.1007/s10876-017-1282-1
]Search in Google Scholar
[
24. Liao X, Qichuan H, Yan Li, Huang S, Tang Q. Exploration on the application of weChat official accounts platform in the teaching reform of analytical chemistry in medical universities. Creative Education 2020; 11.8. doi: https://dx.doi.org/10.4236/ce.2020.11810610.4236/ce.2020.118106
]Search in Google Scholar
[
25. Sundeep D, Kumar T, Vijaya PS, Subba R, Ravi-kumar A, Krishna G. Green synthesis and characterization of Ag nanoparticles from Mangifera indica leaves for dental restoration and antibacterial applications. PMC. 2017; 6(1-2):57-66. doi: https://dx.doi.org/10.1007/s40204-017-0067-910.1007/s40204-017-0067-9543396328470622
]Search in Google Scholar
[
26. Sorescu AA, Nuta A, Ion Rodica-Mariana, Suica-Bunghez Ioana-Raluca. Green synthesis of silver nanoparticles using plant extracts. International Virtual Conference on Advanced Scientific Results 2016; 1:6-10.10.18638/scieconf.2016.4.1.386
]Search in Google Scholar
[
27. Vanaja M, Annadurai G. Coleus aromaticus leaf extract mediated synthesis of silver nanoparticles and its bactericidal activity. Applied Nano-science 2013; 3(3):217-223. doi: https://dx.doi.org/10.1007/s13204-012-0121-910.1007/s13204-012-0121-9
]Search in Google Scholar
[
28. Vanaja M, Rajeshkumar S, Paulkumar K, Gnanajobitha G, Malarkod C, Annadurai G. Kinetic study on green synthesis of silver nanoparticles using Coleus aromaticus leaf extract. Advances in Applied A Science Research 2013; 93:50-55.
]Search in Google Scholar
[
29. Kouvaris P, Delimitis A, Zaspalis V, Papadopoulos D, Tsipas SA, Michailidis N. Green synthesis and characterization of silver nanoparticles produced using Arbutus unedo leaf extract. Materials Lett 2012; 76:18-20. doi: https://dx.doi.org/10.1016/J.MATLET.2012.02.02510.1016/j.matlet.2012.02.025
]Search in Google Scholar
[
30. Ankamwar B. Biosynthesis of gold nanoparticles (green-gold) using leaf extract of Terminalia catappa. E-Journal of Chemistry 2010; 7:1334–1339. doi: https://dx.doi.org/10.1155/2010/74512010.1155/2010/745120
]Search in Google Scholar
[
31. Helen MS, Rani EH. Characterization and antimicrobial study of nickel nanoparticles synthesized from dioscorea (elephant yam) by green route. International Journal of Science and Research 2015; 4(11):216-219. doi: https://dx.doi.org/10.21275/v4i11.nov15110510.21275/v4i11.NOV151105
]Search in Google Scholar
[
32. Ankamwar B. Biosynthesis of gold nanoparticles (green-gold) using leaf extract of Terminalia catappa. E-J Chem 2010; 7:1334–133925. doi: https://dx.doi.org/10.1155/2010/74512010.1155/2010/745120
]Search in Google Scholar
[
33. Rajathi F. Arockiya Aarthi, Arumugam R., Sara-vanan S., Anantharaman P. Phytofabrication of gold nanoparticles assisted by leaves of Suaeda monoica and its free radical scavenging property. J Photochem Photobiol B Biol 2014; 135:75–80. doi: https://dx.doi.org/10.10.1016/j.jphotobiol.2014.03.01610.1016/j.jphotobiol.2014.03.01624811828
]Search in Google Scholar
[
34. Teimuri-mofrad R, Raha H, Tahmasebi B, Farhoudian S, Mehravar M, Nasiri R. Green synthesis of gold nanoparticles using plant extract: Mini-review. Nanochemistry Research 2017. doi: https://dx.doi.org/10.22036/NCR.2017.01.002
]Search in Google Scholar
[
35. Mandal D, Sourav M, Kumar Singh R. Green synthesized nanoparticles as potential nanosensors. Environmental, Chemical and Medical Sensors. Chapter length. 2017; 28:137-164. doi: https://dx.doi.org/10.1007/978-981-10-7751-7_710.1007/978-981-10-7751-7_7
]Search in Google Scholar
[
36. Sre PR, Reka M, Poovazhagi R, Kumar MA, Murugesan K. Antibacterial and cytotoxic effect of biologically synthesized silver nanoparticles using aqueous root extract of Erythrina indica Lam. Spectrochim Acta, Part A 2015; 135:1137–1144. doi: https://dx.doi.org/10.1016/j.saa.2014.08.01910.1016/j.saa.2014.08.01925189525
]Search in Google Scholar
[
37. Das RK, Gogoi N, Babu PJ, Sharma P, Mahanta C, Bora U. The synthesis of gold nanoparticles using Amaranthus spinosus leaf extract and study of their optical properties. Adv Mater Phys Chem 2012; 2:275–28126. doi: https://dx.doi.org/10.4236/ampc.2012.2404010.4236/ampc.2012.24040
]Search in Google Scholar
[
38. Abbasi T, Anuradha J, Ganaie SU, Abbasi SA. Gainful utilization of the highly intransigent weed ipomoea in the synthesis of gold nanoparticles. J King Saud. Univ – Sci 2015; 27:15–22. doi: https://dx.doi.org/10.1016/j.jksus.2014.04.00110.1016/j.jksus.2014.04.001
]Search in Google Scholar
[
39. Rajiv P, Sivaraj R, Venckatesh R. Bio-fabrication of zinc oxide nanoparticles using leaf extract of Parthenium hysterophorus L. and its size-dependent antifungal activity against plant fungal pathogens. PMID 2013; 112:384-7. doi: https://dx.doi.org/10.1016/j.saa.2013.04.07210.1016/j.saa.2013.04.07223686093
]Search in Google Scholar
[
40. Moustafa M, Mahmoud S, Alamri S, Alghamdii H, Shati A, Alrumman S et al. Green synthesis of ag nanoparticles using leaf aqueous extracts of Aizoon canariense L. growing in asir, Saudi Arabia against plant pathogenic fungi. Pak J Agri Sci 2021; 58(1):381-388.
]Search in Google Scholar