[1. Niesteruk A, Lewandowska H, Golub Ż, Wisłocka R, Lewandowski W. Zainteresujmy się rokitnikiem. Preparaty z rokitnika zwyczajnego (Hippophae rhamnoides L.) jako dodatki do żywności oraz ocena ich rynku w Polsce. Kosmos 2013; 62(4):571-81.]Search in Google Scholar
[2. Malinowska P, Olas B. Rokitnik – roślina wartościowa dla zdrowia. Kosmos 2016; 65(2):285-92.]Search in Google Scholar
[3. Michalak M, Podsędek A, Glinka R. Potencjał przeciwutleniający oraz związki polifenolowe glikolowych ekstraktów z Hippophae rhamnoides L. i Vaccinium oxycoccos L. Post Fitoter 2016; 17(1):33-8.]Search in Google Scholar
[4. Olas B. Sea buckthorn as a source of important bioactive compounds in cardiovascular diseases. Food Chem Toxicol 2016; 97:199-204. doi: http://dx.doi.org/10.1016/j.fct.2016.09.00810.1016/j.fct.2016.09.00827616182]DOI öffnenSearch in Google Scholar
[5. Poprac P, Jomova K, Simunkova M, Kollar V, Rhodes CJ, Valko M. Targeting free radicals in oxidative stress-related human diseases. Trends Pharmacol Sci 2017; 38(7):592-607. doi: http://dx.doi.org/10.1016/j.tips.2017.04.00510.1016/j.tips.2017.04.00528551354]DOI öffnenSearch in Google Scholar
[6. Andrisic L, Dudzik D, Barbas C, Milkovic L, Grune T, Zarkovic N. Short overview on metabolomics approach to study pathophysiology of oxidative stress in cancer. Redox Biol 2018; 14:47-58. doi: http://dx.doi.org/10.1016/j.redox.2017.08.00910.1016/j.redox.2017.08.009558339428866248]DOI öffnenSearch in Google Scholar
[7. Van Raamsdonk JM, Vega IE, Brundin P. Oxidative stress in neurodegenerative disease: causation or association? Oncotarget 2017; 8(7):10777-10778. doi: http://dx.doi.org/10.18632/oncotarget.1465010.18632/oncotarget.14650535522028099897]DOI öffnenSearch in Google Scholar
[8. Steullet P, Cabungcal JH, Coyle J, Didriksen M, Gill K, Grace AA et al. Oxidative stress – driven parvalbumin interneuron impairment as a common mechanism in models of schizophrenia. Mol Psychiatry 2017; 22(7):936-943. doi: http://dx.doi.org/10.1038/mp.2017.4710.1038/mp.2017.47549169028322275]Search in Google Scholar
[9. Steenkamp LR, Hough CM, Reus VI, Jain FA, Epel ES, James SJ et al. Severity of anxiety – but not depression – is associated with oxidative stress in Major Depressive Disorder. J Affect Disord 2017; 219:193-200. doi: http://dx.doi.org/10.1016/j.jad.2017.04.04210.1016/j.jad.2017.04.042555032028564628]DOI öffnenSearch in Google Scholar
[10. Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 2004; 114(12):1752-1761. doi: http://dx.doi.org/10.1172/JCI2162510.1172/JCI2162553506515599400]Search in Google Scholar
[11. Sieniawska E. Losy roślinnych antyoksydantów w organizmie ludzkim. Post Fitoter 2012; 13(1):55-58.]Search in Google Scholar
[12. Muzykiewicz A, Zielonka-Brzezicka J, Klimowicz A, Florkowska K. Jarząb pospolity (Sorbus aucuparia L.) jako źródło składników o potencjalnym działaniu antyoksydacyjnym – porównanie właściwości przeciwutleniających ekstraktów z liści, kwiatów i owoców. Probl Hig Epidemiol 2017; 98(2):125-132.]Search in Google Scholar
[13. Zielonka-Brzezicka J, Nowak A, Zielińska M, Klimowicz A. Porównanie właściwości przeciwutleniających wybranych części maliny właściwej (Rubus idaeus) i jeżyny europejskiej (Rubus fruticosus). Pomeranian J Life Sci 2017; 62(4):52-59.10.21164/pomjlifesci.269]Search in Google Scholar
[14. Nowak A., Zielonka-Brzezicka J., Pechaiko D., Tkacz M., Klimowicz A. Ocena właściwości antyoksydacyjnych liści Ginkgo biloba L. po zakończeniu wegetacji. Pomeranian J Life Sci 2017; 63(1):24-30.]Search in Google Scholar
[15. Xu DP, Zheng J, Zhou Y, Li Y, Li S, Li HB. Ultra-sound-assisted extraction of natural antioxidants from the flower of Limonium sinuatum: optimization and comparison with conventional methods. Food Chem 2017; 217:552-559. doi: http://dx.doi.org/10.1016/j.foodchem.2016.09.01310.1016/j.foodchem.2016.09.01327664671]DOI öffnenSearch in Google Scholar
[16. Namngam C, Pinsirodom P. Antioxidant properties, selected enzyme inhibition capacities, and a cosmetic cream formulation of Thai mango seed kernel extracts. Trop J Pharm Res 2017; 16(1):9-16. doi: http://dx.doi.org/10.4314/tjpr.v16i1.310.4314/tjpr.v16i1.3]DOI öffnenSearch in Google Scholar
[17. Tian Y, Liimatainen J, Alanne AL, Lindstedt A, Liu P, Sinkkonen J et al. Phenolic compounds extracted by acidic aqueous ethanol from berries and leaves of different berry plants. Food Chem 2017; 220:266-281. doi: http://dx.doi.org/10.1016/j.foodchem.2016.09.14510.1016/j.foodchem.2016.09.14527855899]DOI öffnenSearch in Google Scholar
[18. Górnaś P, Šnē E, Siger A, Segliņa D. Sea buck-thorn (Hippophae rhamnoides L.) vegetative parts as an unconventional source of lipophilic antioxidants. Saudi J Biol Sci 2016; 23(4):512-516. doi: http://dx.doi.org/10.1016/j.sjbs.2015.05.01510.1016/j.sjbs.2015.05.015489019927298585]DOI öffnenSearch in Google Scholar
[19. Fatima T, Kesari V, Watt I, Wishart D, Todd JF, Schroeder WR et al. Metabolite profiling and expression analysis of flavonoid, vitamin C and tocopherol biosynthesis genes in the antioxidant-rich sea buckthorn (Hippophae rhamnoides L.). Phytochemistry 2015; 118:181-191. doi: http://dx.doi.org/10.1016/j.phytochem.2015.08.00810.1016/j.phytochem.2015.08.00826318327]DOI öffnenSearch in Google Scholar
[20. Kumar MY, Tirpude RJ, Maheshwari DT, Bansal A, Misra K. Antioxidant and antimicrobial properties of phenolic rich fraction of Seabuck-thorn (Hippophae rhamnoides L.) leaves in vitro. Food Chem 2013; 141(4):3443-3450. doi: http://dx.doi.org/10.1016/j.foodchem.2013.06.05710.1016/j.foodchem.2013.06.05723993505]DOI öffnenSearch in Google Scholar
[21. Kiewlicz J, Malinowska P, Szymusiak H. Aktywność przeciwrodnikowa wybranych wyciągów ziołowych. Probl Hig Epidemiol 2013; 94(2):317-320.]Search in Google Scholar
[22. Guo R, Guo X, Li T, Fu X, Liu RH. Comparative assessment of phytochemical profiles, antioxidant and antiproliferative activities of sea buck-thorn (Hippophae rhamnoides L.) berries. Food Chem 2017; 221:997-1003. doi: http://dx.doi.org/10.1016/j.foodchem.2016.11.06310.1016/j.foodchem.2016.11.06327979305]DOI öffnenSearch in Google Scholar
[23. Malinowska P. Effect of flavonoids content on antioxidant activity of commercial cosmetic plant extracts. Herba Pol 2013; 59(3):63-75. doi: http://dx.doi.org/10.2478/hepo-2013-001710.2478/hepo-2013-0017]DOI öffnenSearch in Google Scholar
[24. Ghitescu RE, Volf I, Carausu C, Bühlmann AM, Gilca IA, Popa VI. Optimization of ultra-sound-assisted extraction of polyphenols from spruce wood bark. Ultrason Sonochem 2015; 22:535-541. doi: http://dx.doi.org/10.1016/j.ultsonch.2014.07.01310.1016/j.ultsonch.2014.07.01325132494]DOI öffnenSearch in Google Scholar
[25. Bimakr M, Rahman RA., Taip FS, Adzahan NM, Sarker MZI, Ganjloo A. Optimization of ultrasound-assisted extraction of crude oil from winter melon (Benincasa hispida) seed using response surface methodology and evaluation of its antioxidant activity, total phenolic content and fatty acid composition. Molecules 2012; 17(10):11748-11762. doi: http://dx.doi.org/10.3390/molecules17101174810.3390/molecules171011748626873323044712]Search in Google Scholar
[26. Chemat F, Rombaut N, Sicaire AG, Meullemiestre A, Fabiano-Tixier AS, Abert-Vian M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason Sonochem 2017; 34:540-560. doi: http://dx.doi.org/10.1016/j.ultsonch.2016.06.03510.1016/j.ultsonch.2016.06.03527773280]DOI öffnenSearch in Google Scholar
[27. Tiwari BK. Ultrasound: A clean, green extraction technology. Trends Anal Chem 2015; 71:100-109. doi: http://dx.doi.org/10.1016/j.trac.2015.04.01310.1016/j.trac.2015.04.013]DOI öffnenSearch in Google Scholar
[28. Roby MHH., Sarhan MA, Selim KAH, Khalel KI. Evaluation of antioxidant activity, total phenols and phenolic compounds in thyme (Thymus vulgaris L.), sage (Salvia officinalis L.), and marjoram (Origanum majorana L.) extracts. Ind Crop Prod 2013; 43:827-831. doi: http://dx.doi.org/10.1016/j.indcrop.2012.08.02910.1016/j.indcrop.2012.08.029]DOI öffnenSearch in Google Scholar
[29. Hossain MA, Shah MD. A study on the total phenols content and antioxidant activity of essential oil and different solvent extracts of endemic plant Merremia borneensis. Arab J Chem 2015; 8(1):66-71. doi: http://dx.doi.org/10.1016/j.arabjc.2011.01.00710.1016/j.arabjc.2011.01.007]DOI öffnenSearch in Google Scholar
[30. Jeszka-Skowron M, Flaczyk E, Kobus-Cisowska J, Kośmider A, Górecka D. Optymalizacja procesu ekstrakcji związków fenolowych o aktywności przeciwrodnikowej z liści morwy białej za pomocą metody płaszczyzny odpowiedzi (RSM). Żywn Nauka Technol Jakość 2014; 21(1):148-159. doi: http://dx.doi.org/10.15193/zntj/2014/92/148-15910.15193/zntj/2014/92/148-159]DOI öffnenSearch in Google Scholar
[31. Alam MN, Bristi NJ, Rafiquzzaman M. Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharm J 2013; 21(2):143-52. doi: http://dx.doi.org/10.1016/j.jsps.2012.05.00210.1016/j.jsps.2012.05.002405253824936134]DOI öffnenSearch in Google Scholar
[32. Matysiak M, Gaweł-Bęben K, Rybczyńska K, Gmiński J, Surma S. Porównanie wybranych właściwości biologicznych czosnku (Allium sativum L.) pochodzącego z Polski i Chin. Żywn Nauka Technol Jakość 2015; 2(99):160-9. doi: http://dx.doi.org/10.15193/zntj/2015/99/03010.15193/zntj/2015/99/030]DOI öffnenSearch in Google Scholar
[33. Apak R, Özyürek M, Güçlü K, Çapanoğlu E. Antioxidant activity/capacity measurement. 1. Classification, physicochemical principles, mechanisms, and electron transfer (ET)-based assays. J Agric Food Chem 2016; 64(5):997-1027. doi: http://dx.doi.org/10.1021/acs.jafc.5b0473910.1021/acs.jafc.5b0473926728425]DOI öffnenSearch in Google Scholar