Uneingeschränkter Zugang

Hy-MOM: Hybrid Recommender System Framework Using Memory-Based and Model-Based Collaborative Filtering Framework


Zitieren

1. Karataev, E., V. Zadorozhny. Adaptive Social Learning Based on Crowdsourcing. – IEEE Transactions on Learning Technologies, Vol. 10, April 2017, No 2, pp. 128-139.10.1109/TLT.2016.2515097 Search in Google Scholar

2. KPMG & Google (2017). Online Education in India: 2021. Accessed 21 Janurary 2019. https://assets.kpmg.com/content/dam/kpmg/in/pdf/2017/05/Online-Education-in-India-2021.pdf/ Search in Google Scholar

3. Ricci, F., L. Rokach, B. Shapira. Recommender Systems: Introduction and Challenges. – Recommender Systems Handbook, Boston, MA, USA: Springer, 2015, pp. 1-34.10.1007/978-1-4899-7637-6 Search in Google Scholar

4. Wan, S., Z. Niu. A Hybrid e-Learning Recommendation Approach Based on Learners’ Influence Propagation. – IEEE Transactions on Knowledge and Data Engineering, January 2019.10.1109/TKDE.2019.2895033 Search in Google Scholar

5. Adomavicius, G., A. Tuzhilin. Context-Aware Recommender Systems. – Recommender Systems Handbook, Boston, MA, USA: Springer, 2011, pp. 217-253.10.1007/978-0-387-85820-3_7 Search in Google Scholar

6. Ren, L., W. Wang. An SVM-Based Collaborative Filtering Approach for Top-N Web Services Recommendation. – Future Generation Computer Systems, Vol. 78, January 2018, pp. 531-543.10.1016/j.future.2017.07.027 Search in Google Scholar

7. Aggarwal, C. Recommender System the Textbook. Switzerland, Springer International Publishing, 2016. Search in Google Scholar

8. Paradarami, T. K., N. D. Bastian, J. L. Wightman. A Hybrid Recommender System Using Artificial Neural Networks. – Expert Systems with Applications, Vol. 83, October 2017, pp. 300-313.10.1016/j.eswa.2017.04.046 Search in Google Scholar

9. Fazeli, S., B. Loni, H. Drachsler, P. Sloep. Which Recommender System Can Best Fit Social Learning Platforms? – In: Proc. of European Conference on Technology Enhanced Learning, Springer, Cham, 2014, pp. 84-97.10.1007/978-3-319-11200-8_7 Search in Google Scholar

10. Koren, Y. Factorization Meets the Neighborhood: A Multifaceted Collaborative Filtering Model. – In: Proc. of 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, 2008, pp. 426-434. Search in Google Scholar

11. Hofmann, T. Latent Semantic Models for Collaborative Filtering. – ACM Transactions on Information Systems (TOIS), Vol. 22, January 2004, No 1, pp. 89-115.10.1145/963770.963774 Search in Google Scholar

12. Koren, Y., R. Bell, C. Volinsky. Matrix Factorization Techniques for Recommender Systems. – Computer, Vol. 42, August 2009, No 8, pp. 30-37.10.1109/MC.2009.263 Search in Google Scholar

13. Yu, H. F., C. J. Hsieh, S. Si, I. Dhillon. Scalable Coordinate Descent Approaches to Parallel Matrix Factorization for Recommender Systems. – In: IEEE 12th International Conference on Data Mining, IEEE, 2012, pp. 765-774.10.1109/ICDM.2012.168 Search in Google Scholar

14. Lops, P., M. De Gemmis, G. Semeraro. Content-Based Recommender Systems: State of the Art and Trends. – Recommender Systems Handbook, Boston, MA, USA, Springer, 2011, pp. 73-105.10.1007/978-0-387-85820-3_3 Search in Google Scholar

15. Konstan, J., M. Ekstrand. Introduction to Matrix Factorization and Dimensionality Reduction. – Matrix Factorization and Advanced Techniques, 2018. https://www.coursera.org/lecture/matrix-factorization/introduction-to-matrix-factorization-and-dimensionality-reduction-ncbvP Search in Google Scholar

16. Jahrer, M., A. Töscher, R. Legenstein. Combining Predictions for Accurate Recommender Systems. – In: Proc. of 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, 2010, pp. 693-702.10.1145/1835804.1835893 Search in Google Scholar

17. Fatahi, S., H. Moradi, L. Kashani-Vahid. A Survey of Personality and Learning Styles Models Applied in Virtual Environments with Emphasis on e-Learning Environments. – Artificial Intelligence Review, Vol. 46, October 2016, No 3, pp. 413-429.10.1007/s10462-016-9469-7 Search in Google Scholar

18. Rani, M., R. Nayak, O. P. Vyas. An Ontology-Based Adaptive Personalized e-Learning System, Assisted by Software Agents on Cloud Storage. – Knowledge-Based Systems, Vol. 90, December 2015, pp. 33-48.10.1016/j.knosys.2015.10.002 Search in Google Scholar

19. Truong, H. M. Integrating Learning Styles and Adaptive e-Learning System: Current Developments, Problems and Opportunities. – Computers in Human Behavior, Vol. 55, February 2016, pp. 1185-1193.10.1016/j.chb.2015.02.014 Search in Google Scholar

20. Wan, S., Z. Niu. An e-Learning Recommendation Approach Based on the Self-Organization of Learning Resource. – Knowledge-Based Systems, Vol. 160, November 2018, pp. 71-87.10.1016/j.knosys.2018.06.014 Search in Google Scholar

21. Soloman, B. A., N. Carolina, R. M. Felder. Index of learning Styles Questionnaire. – Learning, 1996, pp. 1-5. Search in Google Scholar

22. Ouf, S., M. A. Ellatif, S. E. Salama, Y. Helmy. A Proposed Paradigm for Smart Learning Environment Based on Semantic Web. – Computers in Human Behavior, Vol. 72, July 2017, pp. 796-818.10.1016/j.chb.2016.08.030 Search in Google Scholar

23. Provitera, M. J., E. Esendal. Learning and Teaching Styles in Management Education: Identifying, Analyzing, and Facilitating. – Journal of College Teaching & Learning, Vol. 5, January 2008, No 1, pp. 69-78.10.19030/tlc.v5i1.1323 Search in Google Scholar

24. Bourkoukou, O., E. El Bachari, M. El Adnani. A Recommender Model in e-Learning Environment. – Arabian Journal for Science and Engineering, Vol. 42, February 2017, No 2, pp. 607-617.10.1007/s13369-016-2292-2 Search in Google Scholar

25. Tarus, J. K., Z. Niu, D. Kalui. A Hybrid Recommender System for e-Learning Based on Context Awareness and Sequential Pattern Mining. – Soft Computing, Vol. 22, April 2018, No 8, pp. 2449-2461.10.1007/s00500-017-2720-6 Search in Google Scholar

26. Gorakala, S. K., M. Usuelli. Data Mining Techniques Used in Recommender Systems. – Building a Recommendation System with R, Birmingham, UK, Packt Publishing, 2015, pp. 9-15. Search in Google Scholar

27. Amatriain, X., A. Jaimes, N. Oliver, J. M. Pujol. Data Mining Methods for Recommender Systems. – Recommender Systems Handbook, Boston, MA, USA, Springer, 2011, pp. 39-71.10.1007/978-0-387-85820-3_2 Search in Google Scholar

28. Chen, J., H. Wang, Z. Yan. Evolutionary Heterogeneous Clustering for Rating Prediction Based on User Collaborative Filtering. – Swarm and Evolutionary Computation, Vol. 38, February 2018, pp. 35-41.10.1016/j.swevo.2017.05.008 Search in Google Scholar

29. Margaris, D., C. Vassilakis, P. Georgiadis. Query Personalization Using Social Network Information and Collaborative Filtering Techniques. – Future Generation Computer Systems, Vol. 78, January 2018, pp. 440-450.10.1016/j.future.2017.03.015 Search in Google Scholar

30. Xiao, J., M. Wang, B. Jiang, J. Li. A Personalized Recommendation System with Combinational Algorithm for Online Learning. – Journal of Ambient Intelligence and Humanized Computing, Vol. 9, Jun 2018, No 3, pp. 667-677.10.1007/s12652-017-0466-8 Search in Google Scholar

31. Imran, H., M. Belghis-Zadeh, T. W. Chang, S. Graf. PLORS: A Personalized Learning Object Recommender System. – Vietnam Journal of Computer Science, Vol. 3, February 2016, No 1, pp. 3-13.10.1007/s40595-015-0049-6 Search in Google Scholar

32. Chen, W., Z. Niu, X. Zhao, Y. Li. A Hybrid Recommendation Algorithm Adapted in e-Learning Environments. – World Wide Web, Vol. 17, March 2014, No 2, pp. 271-284.10.1007/s11280-012-0187-z Search in Google Scholar

33. Klašnja-Milićević, A., B. Vesin, M. Ivanović, Z. Budimac. E-Learning Personalization Based on Hybrid Recommendation Strategy and Learning Style Identification. – Computers & Education, Vol. 56, April 2011, No 3, pp. 885-899.10.1016/j.compedu.2010.11.001 Search in Google Scholar

34. Herlocker, J. L., J. A. Konstan, J. Riedl. Explaining Collaborative Filtering Recommendations. – In: Proc. of 2000 ACM Conference on Computer Supported Cooperative Work, ACM, 2000, pp. 241-250.10.1145/358916.358995 Search in Google Scholar

35. Luo, X., Y. Xia, Q. Zhu. Applying the Learning Rate Adaptation to the Matrix Factorization Based Collaborative Filtering. – Knowledge-Based Systems, Vol. 37, January 2013, pp. 154-164.10.1016/j.knosys.2012.07.016 Search in Google Scholar

36. Wu, H., Z. Zhang, K. Yue, B. Zhang, J. He, L. Sun. Dual-Regularized Matrix Factorization with Deep Neural Networks for Recommender Systems. – Knowledge-Based Systems, Vol. 145, April 2018, pp. 46-58.10.1016/j.knosys.2018.01.003 Search in Google Scholar

37. Zhu, B., F. Ortega, J. Bobadilla, A. Gutiérrez. Assigning Reliability Values to Recommendations Using Matrix Factorization. – Journal of Computational Science, Vol. 26, May 2018, pp. 165-177.10.1016/j.jocs.2018.04.009 Search in Google Scholar

38. Zhang, Y., M. Chen, D. Huang, D. Wu, Y. Li. iDoctor: Personalized and Professionalized Medical Recommendations Based on Hybrid Matrix Factorization. – Future Generation Computer Systems, Vol. 66, January 2017, pp. 30-35.10.1016/j.future.2015.12.001 Search in Google Scholar

39. Qiu, L., S. Gao, W. Cheng, J. Guo. Aspect-Based Latent Factor Model by Integrating Ratings and Reviews for Recommender System. – Knowledge-Based Systems, Vol. 110, October 2016, pp. 233-243.10.1016/j.knosys.2016.07.033 Search in Google Scholar

40. Gemulla, R., E. Nijkamp, P. J. Haas, Y. Sismanis. Large-Scale Matrix Factorization with Distributed Stochastic Gradient Descent. – In: Proc. of 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, 2011, pp. 69-77.10.1145/2020408.2020426 Search in Google Scholar

41. Gogna, A., A. Majumdar. Balancing Accuracy and Diversity in Recommendations Using Matrix Completion Framework. – Knowledge-Based Systems, Vol. 125, Jun 2017, pp. 83-95.10.1016/j.knosys.2017.03.023 Search in Google Scholar

42. Tran, T., K. Lee, Y. Liao, D. Lee. Regularizing Matrix Factorization with User and Item Embeddings for Recommendation. – In: Proc. of 27th ACM International Conference on Information and Knowledge Management, ACM, 2018, pp. 687-696.10.1145/3269206.3271730 Search in Google Scholar

43. Najafabadi, M. K., M. N. R. Mahrin, S. Chuprat, H. M. Sarkan. Improving the Accuracy of Collaborative Filtering Recommendations Using Clustering and Association Rules Mining on Implicit Data. – Computers in Human Behavior, Vol. 67, February 2017, pp. 113-128.10.1016/j.chb.2016.11.010 Search in Google Scholar

44. Nilashi, M., O. Ibrahi, K. Bagherifard. A Recommender System Based on Collaborative Filtering Using Ontology and Dimensionality Reduction Techniques. – Expert Systems with Applications, Vol. 92, February 2018, pp. 507-520.10.1016/j.eswa.2017.09.058 Search in Google Scholar

45. Kim, D., B. J. Yum. Collaborative Filtering Based on Iterative Principal Component Analysis. – Expert Systems with Applications, Vol. 28, May 2005, No 4, pp. 823-830.10.1016/j.eswa.2004.12.037 Search in Google Scholar

46. Benhamdi, S., A. Babouri, R. Chiky. Personalized Recommender System for e-Learning Environment. – Education and Information Technologies, Vol. 22, July 2017, No 4, pp. 1455-1477.10.1007/s10639-016-9504-y Search in Google Scholar

47. JJ. MAE and RMSE – Which Metric is Better? Accessed 7 February, 2019. http://medium.com/ Search in Google Scholar

48. Yu, P., L. Lin, R. Wang, J. Wang, F. Wang. A Unified Latent Factor Correction Scheme for Collaborative Filtering. – In: 11th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD’14), IEEE, August 2014, pp. 581-586.10.1109/FSKD.2014.6980899 Search in Google Scholar

49. Datta, A., S. Kovaleva, P. Mardziel, S. Sen. Latent Factor Interpretations for Collaborative Filtering. – arXiv preprint arXiv:1711.10816, 2017. Search in Google Scholar

50. Rogers, M., W. Yao, A. Luxton-Reilly, J. Leinonen, D. Lottridge, P. Denny. Exploring Personalization of Gamification in an Introductory Programming Course. – In: Proc. of 52nd ACM Technical Symposium on Computer Science Education, March 2021, pp. 1121-1127.10.1145/3408877.3432402 Search in Google Scholar

51. Debois, S. 10 Advantages and Disadvantages of Questionnaires. 8 March 2019. https://surveyanyplace.com/blog/questionnaire-pros-and-cons/ Search in Google Scholar

52. Lefever, S., M. Dal, Á. Matthíasdóttir. Online Data Collection in Academic Research: Advantages and Limitations. – British Journal of Educational Technology, Vol. 38, 2007, No 4, pp. 574-582.10.1111/j.1467-8535.2006.00638.x Search in Google Scholar

53. Beiske, B. Research Methods: Uses and Limitations of Questionnaires, Interviews, and Case Studies. – GRIN Verlag, 2007, pp. 1-11. Search in Google Scholar

eISSN:
1314-4081
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Informatik, Informationstechnik