1. bookVolumen 16 (2022): Heft 4 (December 2022)
Zeitschriftendaten
Format
Zeitschrift
eISSN
2300-5319
Erstveröffentlichung
22 Jan 2014
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
Uneingeschränkter Zugang

Vortex-Type Granulation Machines: Technological Basis of Calculation and Implementation Roadmap

Online veröffentlicht: 01 Nov 2022
Volumen & Heft: Volumen 16 (2022) - Heft 4 (December 2022)
Seitenbereich: 347 - 356
Eingereicht: 01 Jul 2022
Akzeptiert: 18 Sep 2022
Zeitschriftendaten
Format
Zeitschrift
eISSN
2300-5319
Erstveröffentlichung
22 Jan 2014
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch

1. Stahl H. Comparing Different Granulation Techniques. Pharmaceutical Technology Europe. 23–33. Search in Google Scholar

2. Parikh D. Handbook of Pharmaceutical Granulation Technology. 3rd ed. Informa Healthcare; 2009. Search in Google Scholar

3. Muralidhar P, Bhargav E, Sowmya C. Novel techniques of granulation: a review. Int Res J Pharm. 2016; 7(10): 8–13.10.7897/2230-8407.0710114 Search in Google Scholar

4. Solanki HK, Basuri T, Thakkar JH, Patel CA. Recent advances in granulation technology. Int J Pharm Sci. 2010; 5(3): 48–54. Search in Google Scholar

5. Saikh MA. A technical note on granulation technology: a way to optimise granules. Int J Pharm Sci. 2013; 4: 55-67. Search in Google Scholar

6. Artyukhov AE, Artyukhova NO. Technology and the main technological equipment of the process to obtain N4HNO3 with Nanoporous Structure. Springer Proc Phys. 2019; 221: 585–594.10.1007/978-3-030-17759-1_41 Search in Google Scholar

7. Artyukhov A., Artyukhova N, Krmela J, Krmelová V. Complex designing of granulation units with application of computer and software modeling: Case “Vortex granulator”. IOP Conf Ser: Mater Sci and Eng. 2020; 776(1): 012016.10.1088/1757-899X/776/1/012016 Search in Google Scholar

8. Litster J, Ennis B. The science and engineering of granulation processes. Springer-Science+Business Media; 2004.10.1007/978-94-017-0546-2 Search in Google Scholar

9. Srinivasan S. Granulation techniques and technologies: recent progresses. BI. 2015; 5(1): 55–63. Search in Google Scholar

10. Kunii D, Levenspiel O: Fluidization engineering. Butterworth-Heinemann: 1991. Search in Google Scholar

11. Salman AD, Hounslow MJ, Seville, JPK. Granulation. Amsterdam: Elsevier Science Ltd; 2006. Search in Google Scholar

12. Artyukhov A, Artyukhova N, Krmela J, Krmelová V. Granulation machines with highly turbulized flows: Creation of software complex for technological design. IOP Conf Ser: Mater Sci and Eng. 2020; 776(1): 012018.10.1088/1757-899X/776/1/012018 Search in Google Scholar

13. Artyukhov AE, Sklabinskyi VI. Experimental and industrial implementation of porous ammonium nitrate producing process in vortex granulators. Nauk Visnyk Natsionalnoho Hirnychoho Universytetu. 2013; 6:42-48. Search in Google Scholar

14. Artyukhov A, Artyukhova N: Utilization of dust and ammonia from exhaust gases: new solutions for dryers with different types of fluid-ized bed. J Environ Health Sci Eng. 2018; 16(2):193-204.10.1007/s40201-018-0307-5627733430728991 Search in Google Scholar

15. Obodiak V, Artyukhova N, Artyukhov A. Calculation of the residence time of dispersed phase in sectioned devices: Theoretical basics and software implementation. Lect Notes Mech Eng. 2020: 813–820.10.1007/978-3-030-22365-6_81 Search in Google Scholar

16. Artyukhov A, Krmela J, Artyukhova N, Ostroha R. Modeling of the Aerodisperse Systems Hydrodynamics in Devices With Directional Motion of the Fluidized Bed. Encyclopedia of Information Science and Technology, Fifth Edition. IGI Global; 2020. – 1289-1307.10.4018/978-1-7998-3479-3.ch088 Search in Google Scholar

17. Yang WC. Handbook of fluidizaition and fluid-particle systems. New York: Marcel Dekker; 2003.10.1201/9780203912744 Search in Google Scholar

18. Shi DP, Luo ZH, Guo AY. Numerical Simulation of the Gas−Solid Flow in Fluidized-Bed Polymerization Reactors. Ind Eng Chem Res. 2010; 49(9):4070–4079.10.1021/ie901424g Search in Google Scholar

19. Pandaba P, Sukanta, KD. Numerical Simulation for Hydrodynamic Analysis and Pressure Drop Prediction in Horizontal Gas-Solid Flows. Part Sci Technol. 2014; 32(1): 94–103.10.1080/02726351.2013.829543 Search in Google Scholar

20. Feldmann F, Hagemann B, Ganzer L, Panfilov M. Numerical simulation of hydrodynamic and gas mixing processes in underground hydrogen storages. Environ. Earth Sci. 2016; 75: 1165–1172.10.1007/s12665-016-5948-z Search in Google Scholar

21. Crowe C. Multiphase flow handbook. Boca Raton, Taylor & Francis Group; 2006.10.1201/9781420040470 Search in Google Scholar

22. Rybalko M, Loth E, Lankford D. A Lagrangian particle random walk model for hybrid RANS/LES turbulent flows. Powder Technol. 2012; 221: 105-113.10.1016/j.powtec.2011.12.042 Search in Google Scholar

23. Technology & Commercialization Readiness Level Calculator. Available from: https://portal.nyserda.ny.gov/servlet/servlet.FileDownload?file=00Pt000000ASeCMEA1. Search in Google Scholar

24. Cussler EL, Moggridge GD. Chemical Product Design (Cambridge Series in Chemical Engineering). Cambridge University Press; 2011.10.1017/CBO9781139035132 Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo