1. bookVolumen 16 (2022): Heft 3 (September 2022)
Zeitschriftendaten
Format
Zeitschrift
eISSN
2300-5319
Erstveröffentlichung
22 Jan 2014
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
Uneingeschränkter Zugang

Data Mining Approach in Diagnosis and Treatment of Chronic Kidney Disease

Online veröffentlicht: 16 May 2022
Volumen & Heft: Volumen 16 (2022) - Heft 3 (September 2022)
Seitenbereich: 180 - 188
Eingereicht: 02 Nov 2021
Akzeptiert: 15 Mar 2022
Zeitschriftendaten
Format
Zeitschrift
eISSN
2300-5319
Erstveröffentlichung
22 Jan 2014
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch

1. Chen TK, Knicely DH, Grams ME. Chronic Kidney Disease Diagnosis and Management: A Review. JAMA - Journal of the American Medical Association. 2019;322(13):1294–1304. doi: 10.1001/jama.2019.1474510.1001/jama.2019.14745 Search in Google Scholar

2. Coresh J. Astor BC, Greene T, Eknoyan G, Levey AS. Prevalence of chronic kidney disease and decreased kidney function in the adult US population: Third National Health and Nutrition Examination Survey. American Journal of Kidney Diseases. 2003;41(1):1–12. doi: 10.1053/ajkd.2003.50007.10.1053/ajkd.2003.50007 Search in Google Scholar

3. Tuominen TK, Jämsä T, Oksanen J, Tuukkanen J, Gao TJ, Lindholm TS, Jalovaara PK. Composite implant composed of hydroxyapatite and bone morphogenetic protein in the healing of a canine ulnar defect. Annales Chirurgiae et Gynaecologiae. 2001;90(1):32-36. Search in Google Scholar

4. Evans PD, Taal MW. Epidemiology and causes of chronic kidney disease. Chronic Renal Failure. 2011;39(7):402–406. Search in Google Scholar

5. Jha V, Garcia-Garcia G, Iseki K, Li Z, Naicker S, Plattner B, et al. Chronic kidney disease: Global dimension and perspectives. The Lancet: series Global Kindey Disease. 2013;382(9888):260–272.10.1016/S0140-6736(13)60687-X Search in Google Scholar

6. Levey AS, Astor BC, Stevens LA, Coresh J. Chronic kidney disease, diabetes, and hypertension: What’s in a name. Kidney International. 2010;78(1):19–22. doi: 10.1038/ki.2010.115.10.1038/ki.2010.11520428101 Search in Google Scholar

7. Kunwar V, Chandel K, Sabitha AS, Bansal A. Chronic Kidney Disease analysis using data mining classification techniques. 6th International Conference - CloudSystem and Big Data Engineering (Confluence). 2016;300–305. doi: 10.1109/CONFLUENCE.2016.7508132.10.1109/CONFLUENCE.2016.7508132 Search in Google Scholar

8. Manonmani M, Balakrishnan S. Feature Selection Using Improved Teaching Learning Based Algorithm on Chronic Kidney Disease Dataset. Procedia Computer Science. 2020;171(2019):1660–1669. doi: 10.1016/j.procs.2020.04.17810.1016/j.procs.2020.04.178 Search in Google Scholar

9. Dardzińska A. Action Rules Mining. Springer-Verlag, Berlin. 2013.10.1007/978-3-642-35650-6 Search in Google Scholar

10. Avci E, Karakus S, Ozmen O, Avci D. Performance comparison of some classifiers on Chronic Kidney Disease data. 6th International Symposium on Digital Forensic and Security (ISDFS). 2018;1-4. doi: 10.1109/ISDFS.2018.8355392.10.1109/ISDFS.2018.8355392 Search in Google Scholar

11. Rady EHA, Anwar AS. Prediction of kidney disease stages using data mining algorithms. Informatics in Medicine Unlocked. 2019;15:100178. doi: 10.1016/j.imu.2019.100178.10.1016/j.imu.2019.100178 Search in Google Scholar

12. Akben SB. Early Stage Chronic Kidney Disease Diagnosis by Applying Data Mining Methods to Urinalysis, Blood Analysis and Disease History. IRBM. 2018;39(5):353–358. doi: 10.1016/j.irbm.2018.09.004.10.1016/j.irbm.2018.09.004 Search in Google Scholar

13. Simunovic VL. Basic & General Clinical Skills. CreateSpace Independent Publishing Platform. 2013. Search in Google Scholar

14. Freeth A. Diabetes Causes, Myths, Treatment, and Home Care. eMediHealth. 2019. Search in Google Scholar

15. Jujo K, Minami Y, Haruki S, Matsue Y, Shimazaki K, Kadowaki H, Ishida I, Kambayashi K, Arashi H, Sekiguchi H, Hagiwara N. Persistent high blood urea nitrogen level is associated with increased risk of cardiovaserum creatinineular events in patients with acute heart failure. ESC Heart Failure, 2017;4(4):545–553.10.1002/ehf2.12188569517729154415 Search in Google Scholar

16. Piñol-Ripoll G, De La Puerta I, Purroy F. Serum creatinine is an inadequate screening test for renal failure in ischemic stroke patients. Acta Neurologica Scandinavica. 2009;120(1):47–52. doi: 10.1111/j.1600-0404.2008.01120.x.10.1111/j.1600-0404.2008.01120.x19486327 Search in Google Scholar

17. Strazzullo P, Leclercq C. Nutriente information: Sodium. Advances in Nutrition. 2014;5(2):188–90 doi: 10.3945/an.113.005215.10.3945/an.113.005215395180024618759 Search in Google Scholar

18. Kardalas E, Paschou SA, Anagnostis P, Muscogiuri G, Siasos G, Vryonidou A. Hypokalemia: A clinical update. Endocrine Connections. 2018;7(4):135–146. doi: 10.1530/EC-18-0109.10.1530/EC-18-0109588143529540487 Search in Google Scholar

19. Walker HK, Hall WD HJ. Clinical Methods: The History, Physical, and Laboratory Examinations. 3rd edition. 1990. Search in Google Scholar

20. Fairbanks VF, Tefferi A. Normal ranges for packed cell volume and hemoglobin concentration in adults: Relevance to “apparent polycythemia.” European Journal of Haematology. 2000;65(5): 285–296. doi: 10.1034/j.1600-0609.2000.065005285.x.10.1034/j.1600-0609.2000.065005285.x11092458 Search in Google Scholar

21. White Blood Cell Count. Nursing Critical Care. 2019;14:1-40. doi: 10.1097/01.CCN.0000549633.67301.6d10.1097/01.CCN.0000549633.67301.6d Search in Google Scholar

22. Red Blood Cell Count. Nursing Critical Care. 2020;15(1):1-38. doi: 10.1097/01.CCN.0000612852.86589.d210.1097/01.CCN.0000612852.86589.d2 Search in Google Scholar

23. Hall MA. Correlation-based Feature Selection for Machine Learning. Doctoral thesis. University of Waikato. 1999. Search in Google Scholar

24. Sun J, Zhang X, Liao D, Chang V. Efficient method for feature selection in text classification. 2017 International Conference on Engineering and Technology (ICET). 2017;1–6. doi: 10.1109/ICEngTechnol.2017.8308201.10.1109/ICEngTechnol.2017.8308201 Search in Google Scholar

25. An TK, Kim MH. A new Diverse AdaBoost classifier. Artificial Intelligence and Computational Intelligence. 2010;1:359–363. doi: 10.1109/AICI.2010.82.10.1109/AICI.2010.82 Search in Google Scholar

26. Kegl B, Introduction to AdaBoost. 2014. Available from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.679.8866&rep=rep1&type=pdf, 10 October 2021. Search in Google Scholar

27. Zeng ZQ, Yu H Bin, Xu HR, Xie YQ, Gao J. Fast training Support Vector Machines using parallel Sequential Minimal Optimization. rd International Conference on Intelligent System and Knowledge Engineering. 2008;997–1001. doi: 10.1109/ISKE.2008.4731075.10.1109/ISKE.2008.4731075 Search in Google Scholar

28. Abirami S, Chitra P. Energy-efficient edge based real-time healthcare support system. Advances in Computers. 2020;117(1):339–368. doi: 10.1016/bs.adcom.2019.09.00710.1016/bs.adcom.2019.09.007 Search in Google Scholar

29. Kumar Y, Sahoo G. Analysis of Parametric & Non Parametric Classifiers for Classification Technique using WEKA. International Journal of Information Technology and Computer Science 2012; 4(7):43–9. doi: 10.5815/ijitcs.2012.07.06.10.5815/ijitcs.2012.07.06 Search in Google Scholar

30. Humphris CW. Computer Science Principles V10. CreateSpace Independent Publishing Platform. 2013. Search in Google Scholar

31. Saravana N, Gayathri V. Performance and Classification Evaluation of J48 Algorithm and Kendall’s Based J48 Algorithm (KNJ48). International Journal of Computer Trends and Technology. 2018;59(2):73–80. doi: 10.14445/22312803/ijctt-v59p112.10.14445/22312803/IJCTT-V59P112 Search in Google Scholar

32. Waseem S, Salman A, Muhammad AK. Feature subset selection using association rule mining and JRip classifier. International Journal of Physical Sciences. 2013;8(18):885–96. doi: 10.5897/ijps2013.3842.10.5897/IJPS2013.3842 Search in Google Scholar

33. Lewis RJ, Ph D, Street WC. An Introduction to Classification and Regression Tree (CART) Analysis. 2000. Available from: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.95.4103&rep=rep1&type=pdf, 10 October 2021. Search in Google Scholar

34. Frank E, Witten IH. Generating accurate rule sets without global optimization. Hamilton, New Zealand: University of Waikato, Department of Computer Science. 1998. Search in Google Scholar

35. Kalmegh S. Analysis of WEKA Data Mining Algorithm REPTree, Simple Cart and RandomTree for Classification of Indian News. International Journal of Innovative Science, Engineering & Technology. 2015;2(2):438–446. Search in Google Scholar

36. Bro R, Kjeldahl K, Smilde AK, Kiers HAL. Cross-validation of component models: A critical look at current methods. Analytical and Bioanalytical Chemistry. 2008;390(5):1241–1251. doi: 10.1007/s00216-007-1790-1.10.1007/s00216-007-1790-118214448 Search in Google Scholar

37. Kohavi R. A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. Morgan Kaufmann. 1995. Search in Google Scholar

38. Novakovic J, Veljovi A, Iiic S, Papic Z, Tomovic M. Evaluation of Classification Models in Machine Learning. Theory and Applications of Mathematics & Computer Science. 2017;7(1):39–46. Search in Google Scholar

39. Aggarwal CC. [ed.] Data Classification - Algorithms and Applications, Chapman and Hall/CRC. 2014. Search in Google Scholar

40. Maimon O, Rokach L. [ed.] Data Mining and Knowledge Discovery Handbook: A Complete Guide for Practitioners and Researchers. Berlin, Springer. 2005.10.1007/b107408 Search in Google Scholar

41. Ras ZW, Dardzinska A. Action Rules Discovery Based on Tree Classifiers and Meta-actions. Lecture Notes in Artificial Intelligence. 2009;5722;66–75.10.1007/978-3-642-04125-9_10 Search in Google Scholar

42. Ras ZW, Dardzinska A. Action Rules Discovery without Pre-existing Classification Rules. Lecture Notes in Computer Science, 2008; 5306:181-19010.1007/978-3-540-88425-5_19 Search in Google Scholar

43. Jongbo OA. Adetunmb AO, Ogunrinde RB, Badeji-Ajisafe B. Development of an ensemble approach to chronic kidney disease diagnosis. Scientific African, 2020;8:e00456. doi: 10.1016/j.sciaf.2020.e0045610.1016/j.sciaf.2020.e00456 Search in Google Scholar

44. Senan EM, Al-Adhaileh MH, Alsaade FW, et al. Diagnosis of Chronic Kidney Disease Using Effective Classification Algorithms and Recursive Feature Elimination Techniques. Journal of Healthcare Engineering. 2021;2021:1004767. doi: 10.1155/2021/1004767.10.1155/2021/1004767820884334211680 Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo