1. bookVolumen 72 (2022): Heft 3 (September 2022)
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1846-9558
Erstveröffentlichung
28 Feb 2007
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
access type Uneingeschränkter Zugang

Evaluation and molecular modelling of bis-Schiff base derivatives as potential leads for management of diabetes mellitus

Online veröffentlicht: 13 Apr 2022
Volumen & Heft: Volumen 72 (2022) - Heft 3 (September 2022)
Seitenbereich: 449 - 458
Akzeptiert: 02 Sep 2021
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1846-9558
Erstveröffentlichung
28 Feb 2007
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
Abstract

Developing a medication to cure and manage diabetes mellitus complications is of interest in medicinal chemistry. Toward this end, six bis-biphenyl-salicylaldehyde Schiff base derivatives have been evaluated for their α-glucosidase inhibition, antiglycation and anti-inflammation potentials. Four compounds (compounds 25) showed an excellent α-glucosidase inhibitory effect superior to that produced by acarbose. Additionally, the docking study revealed that these compounds are anchored within the binding pocket of α-glucosidase via hydrogen bonding, π-stacking and hydrophobic interactions, comparable to a high number of hydrogen bonding involved in anchoring acarbose. Interestingly, all tested compounds showed varying degrees of antiglycation activity with superior activity for two of them (compound 1 and compound 6) compared to the standard rutin. Moreover, the results indicated an outstanding anti-inflammatory activity for two compounds (compounds 1 and 6) compared to ibuprofen.

1. N. Cho, J. Shaw, S. Karuranga, Y. Huang, J. da Rocha Fernandes, A. Ohlrogge and B. Malanda, IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045, Diabetes Res. Clin. Pract. 138 (2018) 271–281; https://doi.org/10.1016/j.diabres.2018.02.02310.1016/j.diabres.2018.02.02329496507 Search in Google Scholar

2. X. Lin, Y. Xu, X. Pan, J. Xu, Y. Ding, X. Sun, X. Song, Y. Ren and P.-F. Shan, Global, regional, and national burden and trend of diabetes in 195 countries and territories: an analysis from 1990 to 2025, Sci. Rep. 10 (2020) Article ID 14790; https://doi.org/10.1038/s41598-020-71908-910.1038/s41598-020-71908-9747895732901098 Search in Google Scholar

3. O. Oguntibeju, Type 2 diabetes mellitus, oxidative stress and inflammation: examining the links, Int. J. Physiol. Pathophysiol. Pharmacol. 11 (2019) 45–63. Search in Google Scholar

4. F. G. De Felice and S. T. Ferreira, Inflammation, defective insulin signaling, and mitochondrial dysfunction as common molecular denominators connecting type 2 diabetes to Alzheimer disease, Diabetes 63 (2014) 2262–2272; https://doi.org/10.2337/db13-195410.2337/db13-195424931033 Search in Google Scholar

5. A. B. Goldfine, R. Silver, W. Aldhahi, D. Cai, E. Tatro, J. Lee and S. E. Shoelson, Use of salsalate to target inflammation in the treatment of insulin resistance and type 2 diabetes, Clin. Transl. Sci. 1 (2008) 36–43; https://doi.org/10.1111/j.1752-8062.2008.00026.x10.1111/j.1752-8062.2008.00026.x266258719337387 Search in Google Scholar

6. R. Singh, A. Barden, T. Mori and L. Beilin, Advanced glycation end-products: a review, Diabetologia 44 (2001) 129–146; https://doi.org/10.1007/s00125005159110.1007/s00125005159111270668 Search in Google Scholar

7. P. Muthenna, C. Akileshwari, M. Saraswat and G. B. Reddy, Inhibition of advanced glycation end-product formation on eye lens protein by rutin, Br. J. Nutr. 107 (2012) 941–949; https://doi.org/10.1017/S000711451100407710.1017/S000711451100407721864418 Search in Google Scholar

8. K. M. Khan, M. Khan, N. Ambreen, M. Taha, F. Rahim, S. Rasheed, S. Saied, H. Shafi, S. Perveen and M. I. Choudhary, Oxindole derivatives: Synthesis and antiglycation activity, J. Med. Chem. 9 (2013) 681–688; https://doi.org/10.2174/157340641130905000710.2174/157340641130905000723190000 Search in Google Scholar

9. S. Madsbad, Impact of postprandial glucose control on diabetes-related complications: how is the evidence evolving?, J. Diabetes Complicat. 30 (2016) 374–385; https://doi.org/10.1016/j.jdiacomp.2015.09.01910.1016/j.jdiacomp.2015.09.01926541075 Search in Google Scholar

10. M. Hanefeld and F. Schaper, The Role of Alpha-glucosidase Inhibitors (Acarbose), in Pharmacotherapy of Diabetes: New Developments (Ed. C. E. Mogensen), Springer, New York 2007, pp. 143–152.10.1007/978-0-387-69737-6_13 Search in Google Scholar

11. A. Ibrar, S. Zaib, I. Khan, Z. Shafique, A. Saeed and J. Iqbal, New prospects for the development of selective inhibitors of α-glucosidase based on coumarin-iminothiazolidinone hybrids: Synthesis, in-vitro biological screening and molecular docking analysis, J. Taiwan Inst. Chem. E 81 (2017) 119–133; https://doi.org/10.1016/j.jtice.2017.09.04110.1016/j.jtice.2017.09.041 Search in Google Scholar

12. T. Jazzazi, T. S. Ababneh and E. K. Abboushi, Zinc(II) complexes of symmetrical tetradentate Schiff base ligands derived from 2,2’-diamino-6,6’-dibromo-4,4’-dimethyl-1,1’-biphenyl-salicylaldehyde: Synthesis, characterization and computational study, Jordan J. Chem. 14 (2019) 81–87. Search in Google Scholar

13. T. S. Ababneh, M. El-Khateeb, A. K. Tanash, T. M. A. AL-Shboul, M. J. A. Shammout, T. M. A. Jazzazi, M. Alomari, S. Daoud and W. Talib, Synthesis, computational, anticancerous and antiproliferative effects of some copper, manganese and zinc complexes with ligands derived from symmetrical 2,2’-diamino-4,4’-dimethyl-1,1’-biphenyl-salicylaldehyde, Pol. J. Chem. Technol. 23 (2021) 7–15; https://doi.org/10.2478/pjct-2021-000210.2478/pjct-2021-0002 Search in Google Scholar

14. M. Taha, N. Ismail, S. Imran, M. Rokei, S. M. Saad, K. M. and K. M. Khan, Synthesis of new oxadiazole derivatives as α-glucosidase inhibitors, Bioorg. Med. Chem. 23 (2015) 4155–4162; https://doi.org/10.1016/j.bmc.2015.06.06010.1016/j.bmc.2015.06.06026183542 Search in Google Scholar

15. S. Rasheed, S. S. Sánchez, S. Yousuf, S. M. Honoré and M. I. Choudhary, Drug repurposing: Invitro anti-glycation properties of 18 common drugs, PLoS One 13 (2018) e0190509; https://doi.org/10.1371/journal.pone.019050910.1371/journal.pone.0190509575406229300762 Search in Google Scholar

16. S. L. Helfand, J. Werkmeister and J. C. Roder, Chemiluminescence response of human natural killer cells. I. The relationship between target cell binding, chemiluminescence, and cytolysis, J. Exp. Med. 156 (1982) 492–505; https://doi.org/10.1084/jem.156.2.49210.1084/jem.156.2.49221867536178787 Search in Google Scholar

17. G. Wu, D. H. Robertson, I. Brooks and M. J. Vieth, Detailed analysis of grid-based molecular docking: A case study of CDOCKER–A CHARMm-based MD docking algorithm, J. Comput. Chem. 24 (2003) 1549–1562; https://doi.org/10.1002/jcc.1030610.1002/jcc.1030612925999 Search in Google Scholar

18. I. Alsalahat, Z. M. Al-Majdoub, M. O. Taha, J. Barber, H. Aojula, N. Hodson and S. Freeman, Inhibition of aggregation of amyloid-β through covalent modification with benzylpenicillin; potential relevance to Alzheimer’s disease, Biochem. Biophys. Rep. 26 (2021) Article ID 100943; https://doi.org/10.1016/j.bbrep.2021.10094310.1016/j.bbrep.2021.100943798569333778168 Search in Google Scholar

19. F. Ali, K. M. Khan, U. Salar, M. Taha, N. H. Ismail, A. Wadood, M. Riaz and S. Perveen, Hydrazinyl arylthiazole based pyridine scaffolds: Synthesis, structural characterization, in vitro α-glucosidase inhibitory activity, and in silico studies, Eur. J. Med. Chem. 138 (2017) 255–272; https://doi.org/10.1016/j.ejmech.2017.06.04110.1016/j.ejmech.2017.06.04128672278 Search in Google Scholar

20. M. S. Bodnarchuk, Water, water, everywhere..It’s time to stop and think, Drug Discov. Today 21 (2016) 1139–1146; https://doi.org/10.1016/j.drudis.2016.05.00910.1016/j.drudis.2016.05.00927210724 Search in Google Scholar

21. R. Pinal, Effect of molecular symmetry on melting temperature and solubility, Org. Biomol. Chem. 2 (2004) 2692–2699; https://doi.org/10.1039/B407105K10.1039/b407105k15351835 Search in Google Scholar

22. G. Klebe, Applying thermodynamic profiling in lead finding and optimization, Nat. Rev. Drug Discov. 14 (2015) 95–110; https://doi.org/10.1038/nrd448610.1038/nrd448625614222 Search in Google Scholar

23. D. Cervantes-Laurean, D. D. Schramm, E. L. Jacobson, I. Halaweish, G. G. Bruckner and G. A. Boissonneault, Inhibition of advanced glycation end product formation on collagen by rutin and its metabolites, J. Nutr. Biochem. 17 (2006) 531–540; https://doi.org/10.1016/j.jnutbio.2005.10.00210.1016/j.jnutbio.2005.10.00216443355 Search in Google Scholar

24. K. M. Khan, M. Khan, M. Ali, M. Taha, S. Rasheed, S. Perveen and M. I. Choudhary, Synthesis of bis-Schiff bases of isatins and their antiglycation activity, Bioorg. Med. Chem. 17 (2009) 7795–7801; https://doi.org/10.1016/j.bmc.2009.09.02810.1016/j.bmc.2009.09.02819837595 Search in Google Scholar

25. G. Abbas, A. S. Al-Harrasi, H. Hussain, J. Hussain, R. Rashid and M. I. Choudhary, Antiglycation therapy: Discovery of promising antiglycation agents for the management of diabetic complications, Pharm. Biol. 54 (2016) 198–206; https://doi.org/10.3109/13880209.2015.102808010.3109/13880209.2015.102808025853955 Search in Google Scholar

26. C. Padumadasa, D. Dharmadana, A. Abeysekera and M. Thammitiyagodage, In vitro antioxidant, anti-inflammatory and anticancer activities of ethyl acetate soluble proanthocyanidins of the inflorescence of Cocos nucifera L. BMC Complement. Altern. Med. 16 (2016) Article ID 345 (6 pages); https://doi.org/10.1186/s12906-016-1335-210.1186/s12906-016-1335-2501187927595601 Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo