1. bookVolumen 19 (2017): Heft 4 (December 2017)
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1899-4741
Erstveröffentlichung
03 Jul 2007
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
access type Uneingeschränkter Zugang

The structure and properties of eucalyptus fiber/phenolic foam composites under N-β(aminoethyl)-γ-aminopropyl trimethoxy silane pretreatments

Online veröffentlicht: 29 Dec 2017
Seitenbereich: 116 - 121
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1899-4741
Erstveröffentlichung
03 Jul 2007
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
Abstract

Eucalyptus fibers were modified with N-β(aminoethyl)-γ-aminopropyl trimethoxy silane to research the fiber surface’s changes and the influence of the treatment on the mechanical properties, flame resistance, thermal conductivity and microstructure of eucalyptus fiber composite phenolic foams (EFCPFs). The results showed that the partial of hemicelluloses, waxes, lignin and impurities from the fiber surface were dissolved and removed. Compared with untreated EFCPFs, the mechanical properties of treated EFCPFs were increased dramatically; The size of cells was smaller and the distribution was more uniform; The thermal conductivities were basically reduced; Especially the ratio of mass loss decreased obviously. However limited oxygen indexs (LOIs) reduced. And the mechanical properties and LOIs of EFCPFs were basically decreased with the increase of eucalyptus fibers. By comprehensive analysis, the results showed that the interfacial compatibility has been significantly improved between eucalyptus fibers and phenolic resin. And the suitable dosage of eucalyptus fibers was about 5%.

1. Ma, Y., Wang, J., Xu, Y., Wang, C. & Chu, F. (2015). Effect of zinc oxide on properties of phenolic foams/halogen-free flame retardant system. J. Appl. Polym. Sci. 132(44). DOI: 10.1002/app.42730.10.1002/app.42730DOI öffnenSearch in Google Scholar

2. Lei, S., Guo, Q., Zhang, D., Shi, J., Liu, L. & Wei, X. (2010). Preparation and properties of the phenolic foams with controllable nanometer pore structure. Journal of applied polymer science. 117(6):3545–3550. DOI: 10.1002/app.32280.10.1002/app.32280DOI öffnenSearch in Google Scholar

3. Yang, H., Wang, X., Yuan, H., Song, L., Hu, Y. & Yuen, R.K.. (2012). Fire performance and mechanical properties of phenolic foams modified by phosphorus-containing polyethers. Journal of Polymer Research. 19(3):1–10. DOI: 10.1007/s10965-012-9831-7.10.1007/s10965-012-9831-7DOI öffnenSearch in Google Scholar

4. Rangari, V.K., Hassan, T.A., Zhou, Y., Mahfuz, H., Jeelani, S. & Prorok, B.C.. (2007). Cloisite clay-infused phenolic foam nanocomposites. Journal of applied polymer science. 103(1):308–314. DOI: 10.1002/app.25287.10.1002/app.25287DOI öffnenSearch in Google Scholar

5. Shen, H., Lavoie, A.J. & Nutt, S.R. (2003). Enhanced peel resistance of fiber reinforced phenolic foams. Composites Part A: Appl. Sci. Manufact. 34(10), 941–948. DOI: 10.1016/S1359-835X(03)00210-0.10.1016/S1359-835X(03)00210-0Search in Google Scholar

6. Shen, H. & Nutt, S. (2003). Mechanical characterization of short fiber reinforced phenolic foam. Composites Part A: Applied science and manufacturing. 34(9), 899–906. DOI:10.1016/S1359-835X(03)00136-2.10.1016/S1359-835X(03)00136-2DOI öffnenSearch in Google Scholar

7. Bledzki, A. & Gassan, J. (1999). Composites reinforced with cellulose based fibres. Prog. Polym. Sci. 24(2), 221–274. DOI: 10.1016/S0079-6700(98)00018-5.10.1016/S0079-6700(98)00018-5DOI öffnenSearch in Google Scholar

8. Canche-E scamilla, G., Cauich-Cupul, J., Mendizabal, E., Puig, J., Vazquez-Torres, H. & Herrera-Franco, P. (1999). Mechanical properties of acrylate-grafted henequen cellulose fibers and their application in composites. Composites Part A: Appl. Sci. Manufact. 30(3), 349–359. DOI: 10.1016/S1359-835X(98)00116-X.10.1016/S1359-835X(98)00116-XSearch in Google Scholar

9. Mitra, B., Basak, R. & Sarkar, M. (1998). Studies on jute-reinforced composites, its limitations, and some solutions through chemical modifications of fibers. J. Appl. Polym. Sci. 67(6), 1093–1100. DOI: 10.1002/(SICI)1097-4628(19980207)67:6<1093::AID-APP17>3.0.CO;2-1.10.1002/(SICI)1097-4628(19980207)67:6<1093::AID-APP17>3.0.CO;2-1DOI öffnenSearch in Google Scholar

10. Rana, A., Mandal, A., Mitra, B., Jacobson, R., Rowell, R. & Banerjee, A. (1998). Short jute fiber-reinforced polypropylene composites: effect of compatibilizer. J. Appl. Polym. Sci. 69(2), 329–338. DOI: 10.1002/(SICI)1097-4628(19980711)69:2<329::AID-APP14>3.0.CO;2-R.10.1002/(SICI)1097-4628(19980711)69:2<329::AID-APP14>3.0.CO;2-RSearch in Google Scholar

11. Xie, Y., Hill, C.A., Xiao, Z., Militz, H. & Mai, C. (2010). Silane coupling agents used for natural fiber/polymer composites: A review. Composites Part A: Appl. Sci. Manufact. 41(7), 806–819. DOI: 10.1016/j.compositesa.2010.03.005.10.1016/j.compositesa.2010.03.005DOI öffnenSearch in Google Scholar

12. Yang, Y. & He, J. (2015). Mechanical characterization of phenolic foams modified by short glass fibers and polyurethane prepolymer. Polymer Composites 36(9), 1584–1589. DOI: 10.1002/pc.23066.10.1002/pc.23066DOI öffnenSearch in Google Scholar

13. Maldas, D. & Kokta, B. (1993). Performance of hybrid reinforcements in PVC composites. I: Use of surface-modified mica and wood pulp as reinforcements. J. Test. Evaluat. 21(1), 68–72. DOI: 10.1177/073168449201101002.10.1177/073168449201101002DOI öffnenSearch in Google Scholar

14. Mohanty, A. & Misra, M. & Drzal, L. (2002). Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. J. Polym. Environ. 10(1–2), 19–26. DOI: 10.1023/A:1021013921916.10.1023/A:1021013921916DOI öffnenSearch in Google Scholar

15. Bledzki, A., Gassan, J. & Theis, S. (1998). Wood-filled thermoplastic composites. Mech. Comp. Mat. 34(6):563–568. DOI: 10.1007/BF02254666.10.1007/BF02254666DOI öffnenSearch in Google Scholar

16. Cantero, G., Arbelaiz, A., Llano-Ponte, R. & Mondragon, I. (2003). Effects of fibre treatment on wettability and mechanical behaviour of flax/polypropylene composites. Comp. Sci. Technol. 63(9), 1247–1254. DOI: 10.1016/S0266-3538(03)00094-0.10.1016/S0266-3538(03)00094-0DOI öffnenSearch in Google Scholar

17. Bachtiar, D., Sapuan, S. & Hamdan, M. (2008). The effect of alkaline treatment on tensile properties of sugar palm fibre reinforced epoxy composites. Materials & Design. 29(7), 1285–1290. DOI: 10.1016/j.matdes.2007.09.006.10.1016/j.matdes.2007.09.006DOI öffnenSearch in Google Scholar

18. Bledzki, A., Reihmane, S. & Gassan, J. (1996). Properties and modification methods for vegetable fibers for natural fiber composites. J. Appl. Polym. Sci. 59(8), 1329-1336. DOI:10.1002/(SICI)1097-4628(19960222)59:8<1329::AIDAPP17>3.0.CO;2-0.Search in Google Scholar

19. Islam, M. & Pickering, K. (2007). Influence of alkali treatment on the interfacial bond strength of industrial hemp fibre reinforced epoxy composites: Effect of variation from the ideal stoicheometric ratio of epoxy resin to curing agent. Adv. Mater. Res. 29, 319–322. DOI:10.4028/www.scientific.net/AMR.29-30.319.10.4028/www.scientific.net/AMR.29-30.319DOI öffnenSearch in Google Scholar

20. Rider, A. & Arnott, D. (2000). Boiling water and silane pre-treatment of aluminium alloys for durable adhesive bonding. Intern. J. Adhes. Adhesiv. 20(3), 209–220. DOI: 10.1016/S0143-7496(99)00046-9.10.1016/S0143-7496(99)00046-9DOI öffnenSearch in Google Scholar

21. Mittal, K.L. (2007). Silanes and other coupling agents. CRC Press.Search in Google Scholar

22. Colom, X., Carrasco, F., Pages, P. & Canavate, J. (2003). Effects of different treatments on the interface of HDPE/lignocellulosic fiber composites. Composites Sci. Technol. 63(2), 161–169. DOI: 10.1016/S0266-3538(02)00248-8.10.1016/S0266-3538(02)00248-8DOI öffnenSearch in Google Scholar

23. Pickering, K., Abdalla, A., Ji, C., McDonald, A. & Franich, R. (2003). The effect of silane coupling agents on radiata pine fibre for use in thermoplastic matrix composites. Composites Part A: Appl. Sci. Manufact. 34(10), 915–926. DOI: 10.1016/S1359-835X(03)00234-3.10.1016/S1359-835X(03)00234-3Search in Google Scholar

24. Te-fu, Q., Luo-hua, H. & Gai-yun, L. (2005). Effect of chemical modification on the properties of wood/polypropylene composites. J. For. Res. 16(3), 241–244. DOI: 10.1007/BF02856824.10.1007/BF02856824DOI öffnenSearch in Google Scholar

25. Towo, A.N. & Ansell, M.P. (2008). Fatigue evaluation and dynamic mechanical thermal analysis of sisal fibre–thermosetting resin composites. Composites Sci. Technol. 68(3), 925–932. DOI:10.1016/j.compscitech.2007.08.022.10.1016/j.compscitech.2007.08.022DOI öffnenSearch in Google Scholar

26. Silverstein, R.M., Webster, F.X., Kiemle, D.J. & Bryce, D.L. (2014). Spectrometric identification of organic compounds. John Wiley & Sons.Search in Google Scholar

27. Lu, B., Zhang, L. & Zeng, J.E. et al. (2005). Natural Fiber Composites Material Chemical Industry Press.Search in Google Scholar

28. Valadez-Gonzalez, A., Cervantes-Uc, J., Olayo, R. & Herrera-Franco, P. (1999). Chemical modification of henequen fibers with an organosilane coupling agent. Composites Part B: Engineering, 30(3), 321–331. DOI: 10.1016/S1359-8368(98)00055-9.10.1016/S1359-8368(98)00055-9DOI öffnenSearch in Google Scholar

29. Cui, Y., Lee, S., Noruziaan, B., Cheung, M. & Tao, J. (2008). Fabrication and interfacial modification of wood/recycled plastic composite materials. Composites Part A: Appl. Sci. Manufact. 39(4), 655–661. DOI: 10.1016/j.compositesa.2007.10.017.10.1016/j.compositesa.2007.10.017DOI öffnenSearch in Google Scholar

30. Wang, L., Han, G. & Zhang, Y. (2007). Comparative study of composition, structure and properties of Apocynum venetum fibers under different pretreatments. Carbohydr. Polym. 69(2), 391–397. DOI: 10.1016/j.carbpol.2006.12.028.10.1016/j.carbpol.2006.12.028DOI öffnenSearch in Google Scholar

31. Cuicui, W. & Dai Zhen, X.G. (2010). Research on Hard-segment Flame-retardant Modification of Waterborne Polyurethane. China Coatings. 8:016. DOI: 10.13531/j.cnki.china.coatings.2010.08.010.10.13531/j.cnki.china.coatings.2010.08.010DOI öffnenSearch in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo