1. bookVolumen 17 (2017): Heft 2 (June 2017)
17 Mar 2011
4 Hefte pro Jahr
Uneingeschränkter Zugang

Flow cytometry as a valuable tool to study cyanobacteria:A mini-review

Online veröffentlicht: 19 Dec 2017
Volumen & Heft: Volumen 17 (2017) - Heft 2 (June 2017)
Seitenbereich: 89 - 95
17 Mar 2011
4 Hefte pro Jahr

Acuña A.M., Snellenburg J.J., Gwizdala M., Kirilovsky D., van Grondelle R., van Stokkum IH., 2016, Resolving the contribution of the uncoupled phycobilisomes to cyanobacterial pulse-amplitude modulated (PAM) fluorometry signals, Photosynth. Res. 127(1): 91–102.10.1007/s11120-015-0141-x467309925893897Search in Google Scholar

Adir N., 2005, Elucidation of the molecular structures of components of the phycobilisome: reconstructing a giant, Photosynth. Res. 85(1): 15–32.10.1007/s11120-004-2143-y15977057Search in Google Scholar

Ahn C.Y., Joung S.H., Yoon S.K., Oh H.M., 2007, Alternative alert system for cyanobacterial bloom, using phycocyanin as a level determinant, J. Microbiol. 45(2): 98–104.Search in Google Scholar

Apeldoorn M.E., Egmond H.P., Speijers G.J.A., Bakker G.J.I., 2007, Toxins of cyanobacteria, Mol. Nutr. Food Res. 51(1): 7–60.10.1002/mnfr.20060018517195276Search in Google Scholar

Azevedo R., Rodriguez E., Figueiredo D., Peixoto F., Santos C., 2012, Methodologies for the study of filamentous cyanobacteria by flow cytometry, Fresenius Environ. Bull. 21(8): 679–684.Search in Google Scholar

Baran J., 2008, Nowa epoka cytometrii przepływowej – przewodnik po współczesnych cytometrach i ich zastosowanie (New time of flow cytometry – Applications of contemporary cytometers), Post. Biol. Kom. 24(Suppl. 24): 3–15 (in Polish, English summary).Search in Google Scholar

Becker A., Meister A., Wilhelm C., 2002, Flow cytometric discrimination of various phycobilin-containing phytoplankton groups in a hypertrophic reservoir, Cytometry 48(1): 45–57.10.1002/cyto.1010412116380DOI öffnenSearch in Google Scholar

Bold H.C, Wynne M.J., 1985, Introduction to the Algae: Structure and Reproduction, Prentice-Hall, New Jersey, 720 pp.Search in Google Scholar

Brient L., Lengronne M., Bertrand E., Rolland D., Sipel A., Steinmann D., Baudin I., Legeas M., Le Rouzic B., Bormans M., 2008, A phycocyanin probe as a tool for monitoring cyanobacteria in freshwater bodies, J. Environ. Monit. 10(2): 248–255.10.1039/B714238B18246219Search in Google Scholar

Butler WL., 1978, Energy distribution in photochemical apparatus of photosynthesis, Ann. Rev. Plant Physiol. 29: 345–378.10.1146/annurev.pp.29.060178.002021DOI öffnenSearch in Google Scholar

Campbell L., Nolla H.A., 1994, The importance of Prochlorococcuus to community structure in the central North Pacific Ocean, Limnol. Oceanogr. 39(4): 954–961.10.4319/lo.1994.39.4.0954Search in Google Scholar

Cavalier-Smith T., 2002, The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification, Int. J. Syst. Evol. Microbiol. 52: 7–76.10.1099/00207713-52-1-711837318Search in Google Scholar

Cellamare M., Rolland A., Jacquet S., 2010, Flow cytometry sorting of freshwater phytoplankton, J. Appl. Phycol. 22(1): 87–100.10.1007/s10811-009-9439-4DOI öffnenSearch in Google Scholar

Costa M., Costa-Rodrigues J., Fernandes M.H., Barros P., Vasconcelos V., Martins R., 2012, Marine cyanobacteria compounds with anticancer properties: a review on the implication of apoptosis, Mar. Drugs 10(10): 2181–2207.10.3390/md10102181349701623170077Search in Google Scholar

Davis D., 2007, Cell sorting by flow cytometry, [in:] Macey M.G. (ed.), Flow cytometry: principles and applications, Humana Press, New York: 257–276.10.1007/978-1-59745-451-3_11Search in Google Scholar

Dennis M.A., Landman M., Wood S.A., Hamilton D., 2011, Application of flow cytometry for examining phytoplankton succession in two eutrophic lakes, Water. Sci. Technol. 64(4): 999–1008.10.2166/wst.2011.09922097090Search in Google Scholar

Dubelaar G.B.J., Jonker R.R., 2000, Flow cytometry as a tool for the study of phytoplankton, Sci. Mar. 64(2): 135–156.10.3989/scimar.2000.64n2135DOI öffnenSearch in Google Scholar

Dudkowiak A., Olejarz B., Łukasiewicz J., Sikora J., Wiktorowicz K., 2011, Heavy metals effect on cyanobacteria Synechocystis aquatilis study using absorption, fluorescence, flow cytometry, and photothermal measurement, Int. J. Thermophys 32(4): 762–773.10.1007/s10765-010-0852-3DOI öffnenSearch in Google Scholar

Dziallas C., Pinnow S., Grossart H-P., 2011, Quantification of toxic and toxin-producing cyanobacterial cells by RING-FISH in combination with flow cytometry, Limnol. Oceanogr. Methods 9(2): 67–73.10.4319/lom.2011.9.67DOI öffnenSearch in Google Scholar

Garstka M., 2007, Strukturalne podstawy reakcji świetlnych fotosyntezy (Structural background of photosynthetic light reactions), Post. Biol. Kom. 34(3): 445–476 (in Polish, English summary).Search in Google Scholar

Glazer A.N., 1994, Phycobiliproteins-a family of valuable, widely used fluorophores, J. Appl. Phycol. 6(2): 105–112.10.1007/BF02186064DOI öffnenSearch in Google Scholar

Hall D.O., Rao K.K., 1999, Photosynthesis, Cambridge University Press, Cambridge, 214 pp.Search in Google Scholar

Hammes F., Egli T., 2010, Cytometric methods for measuring bacteria in water: advantages, pitfalls and applications, Anal. Bioanal. Chem. 397(3): 1083–1095.10.1007/s00216-010-3646-320352197Search in Google Scholar

Ibrahim S.F., van den Engh G., 2007, Flow cytometry and cell sorting, Adv. Biochem. Eng. Biotechnol. 106: 19–39.10.1007/10_2007_07317728993Search in Google Scholar

Izydorczyk K., Tarczyńska M., 2005, Application of in vivo fluorescence measurement for monitoring of phytoplankton dynamics with a special emphasis on Cyanobacteria], Ecohydrol. Hydrobiol. 5(1): 35–41.Search in Google Scholar

Jakubowska N., Szeląg-Wasielewska E., 2015, Toxic picoplanktonic cyanobacteria – Review, Mar. Drugs. 13(3): 1497–1518.10.3390/md13031497437799625793428Search in Google Scholar

Jordan P., Fromme P., Witt H.T., Klukas O., Saenger W., Krauss N., 2001, Three-dimensional structure of cyanobacterial photosystem I at 2.5 resolution, Nature 411(6840): 909–917.10.1038/3508200011418848Search in Google Scholar

Kaczmarek A., Mackiewicz A., Leporowska E., Osawa T., 2002, Rola i miejsce cytometrii przepływowej w diagnostyce klinicznej (The role of flow cytometry in clinical diagnosis), Współcz. Onkol. 6(6): 366–373 (in Polish, English summary).Search in Google Scholar

Karczewski J., Poniedziałek B., Adamski Z., Rzymski P., 2014, The effects of the microbiota on the host immune system, Autoimmunity 47(8): 494–504.10.3109/08916934.2014.938322Search in Google Scholar

Karo O., Wahl A., Nicol S.B., Brachert J., Lambrecht B., Spengler H.P., Nauwelaers F., Schmidt M., Schneider C.K., Müller T.H., Montag T., 2008, Bacteria detection by flow cytometry, Clin. Chem. Lab. Med. 46(7): 947–953.10.1515/CCLM.2008.156DOI öffnenSearch in Google Scholar

Krause G.H., Weis E., 1991, Chlorophyll fluorescence and photosynthesis: the basics, Annu. Rev. Plant Physiol. Plant Mol. Biol. 42: 313–349.10.1146/annurev.pp.42.060191.001525DOI öffnenSearch in Google Scholar

Leunert F., Grossart H.P., Gerhardt V., Eckert W., 2013, Toxicant induced changes on delayed fluorescence decay kinetics of cyanobacteria and green algae: a rapid and sensitive biotest, PLoS ONE 8: e63127.10.1371/journal.pone.0063127Search in Google Scholar

Lichtenthaler H.K., 1988, Applications of chlorophyll fluorescence in photosynthesis research, stress physiology, hydrobiology and remote sensing, Springer, Dordrecht, 366 pp.10.1007/978-94-009-2823-7Search in Google Scholar

Liu T., Kong W., Chen N., Zhu J., Wang J., He X., Jin Y., 2016, Bacterial characterization of Beijing drinking water by flow cytometry and MiSeq sequencing of the 16S rRNA gene, Ecol. Evol. 6(4): 923–934.10.1002/ece3.1955Search in Google Scholar

MacColl R., 2004, Allophycocyanin and energy transfer, Biochim. Biophys. Acta 1657(2–3): 73–81.10.1016/j.bbabio.2004.04.005DOI öffnenSearch in Google Scholar

Mankiewicz J., Tarczyńska M., Walter Z., Zalewski M., 2003, Natural toxins from Cyanobacteria, Acta Biol. Cracov. Ser. Bot. 45(2): 9–20.Search in Google Scholar

Maxwell K., Johnson G.N., 2000, Chlorophyll fluorescence – a practical guide, J. Exp. Bot. 51(345): 659–668.10.1093/jexbot/51.345.659Search in Google Scholar

Melamed M.R., Mullaney P.F., Shapiro H.M., 1990, An historical review of the development of flow cytometers and sorters, [in:] Melamed M.R., Lindmo T., Mendelsohn M.L. (eds), Flow cytometry and sorting, Wiley-Liss, New York: 1–8.Search in Google Scholar

Murata N., Takahashi S., Nishiyama Y., Allakhverdiev S.I., 2007, Photoinhibition of photosystem II under environmental stress, Biochim Biophys Acta 1767(6): 414–421.10.1016/j.bbabio.2006.11.019DOI öffnenSearch in Google Scholar

Öberg J., 2016, Cyanobacteria blooms in the Baltic Sea. HELCOM Baltic Sea Environment Fact Sheets 2016. Retrieved from http://helcom.fi/baltic-sea-trends/environment-fact-sheets/eutrophication/cyanobacterial-blooms-in-the-baltic-sea [accessed 21 March 2017].Search in Google Scholar

Olson R.J., Vaulot D., Chisholm S.W., 1985, Marine phytoplankton distributions measured using shipboard flow cytometry, Deep-Sea Res. A 32(10): 1273–1128.10.1016/0198-0149(85)90009-3Search in Google Scholar

Oren A., 2011, Cyanobacterial systematic and nomenclature as featured in the International Bulletin of Bacteriological Nomenclature and Taxonomy / International Journal of Systematic Bacteriology / International Journal of Systematic and Evolutionary Microbiology, Int. J. Syst. Evol. Microbiol. 61: 10–15.10.1099/ijs.0.018838-021097637Search in Google Scholar

Phinney D.A., Cucci, T.L., 1989, Flow cytometry and phytoplankton, Cytometry 10(5): 511–521.10.1002/cyto.9901005062776567DOI öffnenSearch in Google Scholar

Poniedziałek B., Rzymski P., Kokociński M., 2012, Cylindrospermopsin: water-linked potential threat to human health in Europe, Environ. Toxicol. Pharmacol. 34(3): 651–660.10.1016/j.etap.2012.08.00522986102DOI öffnenSearch in Google Scholar

Poniedziałek B., Rzymski P., Kokociński M., Burchardt L., Wiktorowicz K., 2011, Zmiany fluorescencji chlorofilu Cylindrospermopsis raciborskii i Aphanizomenon flos-aquae pod wpływem soli ołowiu (Changes of Cylindrospermopsis raciborskii and Aphanizomenon flos-aquae chlorophyll fluorescence under the influence of lead), Ochr. Środ. Zas. Nat. 48: 513–519 (in Polish, English summary).Search in Google Scholar

Poniedziałek B., Rzymski P., Karczewski J., 2014, Increased apoptosis of regulatory T cells in Crohn’s disease, Hepatogastroenterology 61(130): 382–384.Search in Google Scholar

Readman J.W., Devilla R.A., Tarran G., Llewellyn C.A., Fileman T.W., Easton A., Burkill P.H., Mantoura R.F.C., 2004, Flow cytometry and pigment analyses as tools to investigate the toxicity of herbicides to natural phytoplankton communities, Mar. Environ. Res. 58(2–5): 353–358.10.1016/j.marenvres.2004.03.08115178054DOI öffnenSearch in Google Scholar

Rzymski P., Brygider A., Kokociński M., 2017a, On the occurrence and toxicity of Cylindrospermopsis raciborskii in Poland, Limnol. Rev. 17(1): 23–29.10.1515/limre-2017-0003Search in Google Scholar

Rzymski P., Jaśkiewicz M., 2017, Microalgal food supplements from the perspective of Polish consumers: patterns of use, adverse events, and beneficial effects, J. Appl. Phycol. 29(4): 1841–1850.10.1007/s10811-017-1079-5551419828775657DOI öffnenSearch in Google Scholar

Rzymski P., Langowska A., Fliszkiewicz M., Poniedziałek B., Karczewski J., Wiktorowicz K., 2012, Flow cytometry as an estimation tool for honey bee sperm viability, Theriogenology 77(8): 1642–1647.10.1016/j.theriogenology.2011.12.00922365695Search in Google Scholar

Rzymski P., Poniedziałek B., Mankiewicz-Boczek J., Faassen E.J., Jurczak T., Gągała-Borowska I., Ballot A., Lürling M., Kokociński M., 2017b, Polyphasic toxicological screening of Cylindrospermopsis raciborskii and Aphanizomenon gracile isolated in Poland, Algal Res. 24: 72–80.10.1016/j.algal.2017.02.011Search in Google Scholar

Rzymski P., Poniedziałek B., 2014a, In search of environmental role of cylindrospermopsin: A review on global distribution and ecology of its producers, Wat. Res. 66: 320–327.10.1016/j.watres.2014.08.02925222334Search in Google Scholar

Rzymski P., Poniedziałek B., 2014b, Blue-green algae blooms: environmental and health consequences, [in:] Lambert A., Roux C. (eds), Eutrophication. Causes, economic implications and future challenges, Nova Science Publishers, New York: 155–181.Search in Google Scholar

Rzymski P., Poniedziałek B., Kokociński M., Jurczak T., Lipski D., Wiktorowicz K., 2014a, Interspecific allelopathy in cyanobacteria: Cylindrospermopsin and Cylindrospermopsis raciborskii effect on the growth and metabolism of Microcystis aeruginosa, Harmful Algae 35: 1–8.10.1016/j.hal.2014.03.002DOI öffnenSearch in Google Scholar

Rzymski P., Poniedziałek B., Niedzielski P., Tabaczewski P., Wiktorowicz K., 2014b, Cadmium and lead toxicity and bioaccumulation in Microcystis aeruginosa, Front. Environ. Sci. Eng. 8(3): 427–433.10.1007/s11783-013-0566-4DOI öffnenSearch in Google Scholar

Rzymski P., Niedzielski P., Kaczmarek N., Jurczak T., Klimaszyk P., 2015, The multidisciplinary approach to safety and toxicity assessment of microalgae-based food supplements following clinical cases of poisoning, Harmful Algae 46: 34–42.10.1016/j.hal.2015.05.003Search in Google Scholar

Seckbach J., 2007, Algae and cyanobacteria in extreme environments, Springer, Dordrecht, 811 pp.10.1007/978-1-4020-6112-7Search in Google Scholar

Silva-Stenico M.E., Kaneno R., Zambuzi F.A., Vaz M.G., Alvarenga D.O., Fiore M.F., 2013, Natural products from cyanobacteria with antimicrobial and antitumor activity, Curr. Pharm. Biotechnol. 14(9): 820–828.10.2174/1389201014666131227114846DOI öffnenSearch in Google Scholar

Sinigalliano C.D., Winshell J., Guerrero M.A., Scorzetti G., Fell J.W., Eaton R.W., Brand L., Rein K.S., 2009, Viable cell sorting of dinoflagellates by multiparametric flow cytometry, Phycologia 48(4): 249–257.10.2216/08-51.1DOI öffnenSearch in Google Scholar

Sode K., Horikoshi K., Takeyama H., Nakamura N., Matsunaga T., 1991, On-line monitoring of Marine cyanobacterial cultivation based on phycocyanin fluorescence, J. Biotechnol. 21(3): 209–217.10.1016/0168-1656(91)90042-TSearch in Google Scholar

Tashyreva D., Elster J., Billi D., 2013, A novel staining protocol for multiparameter assessment of cell heterogeneity in Phormidium populations (cyanobacteria) employing fluorescent dyes, PLoS ONE 8: e55283.10.1371/journal.pone.0055283Search in Google Scholar

Tomo T., Akimoto S., Tsuchiya T., Fukuya M., Tanaka K., Mimuro M., 2008, Isolation and spectral characterization of Photosystem II reaction center from Synechocystis sp. PCC 6803, Photosynth. Res. 98(1–3): 293–302.10.1007/s11120-008-9354-6Search in Google Scholar

Vives-Rego J., Lebaron P., Nebe-von Caron G., 2000, Current and future applications of flow cytometry in aquatic microbiology, FEMS Microbiol. Rev. 24(4): 429–448.10.1111/j.1574-6976.2000.tb00549.xSearch in Google Scholar

Whitton B.A., Potts M., 2000, The ecology of Cyanobacteria: their diversity in time and space, Academic Publishers, Dordrecht, 632 pp.Search in Google Scholar

Zhou Q., Chen W., Zhang H., Peng L., Liu L., Han Z., Wan N., Li L., Song L., 2012, A flow cytometer based protocol for quantitative analysis of bloom-forming cyanobacteria (Microcystis) in lake sediments, J. Environ. Sci. 24(9): 1709–1716.10.1016/S1001-0742(11)60993-5DOI öffnenSearch in Google Scholar

Empfohlene Artikel von Trend MD