[[1] Savolainen K., Backman U., Brouwer D., Fadeel B., Fernandes T., Kuhlbusch T., Landsiedel R., Lynch I., Pylkkanen L.(2013), Nanosafety in Europe 2015-2025: Towards Safe and Sustainable Nanomaterials and Nanotechnology Innovations, EDITA, Helsinki 2013, ISBN 978-952-261-310-3.]Search in Google Scholar
[[2] Linkov I. et al.(2009), Emerging methods and tools for environmental risk assessment, decision-making, and policy for nanomaterials: summary of NATO Advanced Research Workshop, Journal of Nanoparticle Research 11 (2009) 513-527.]Search in Google Scholar
[[3] Warheit D.B., Sayes Ch.M., Reed K.L., Swain K.A.(2008), Health effects related to nanoparticle exposures: environmental, health and safety considerations for assessing hazards and risks, Pharmacology and therapeutics, 120,35-42, 2008.10.1016/j.pharmthera.2008.07.001]Search in Google Scholar
[[4] Brouwer D., Van Duuren-Stuurman B., Berges M., Jankowska E., Bard D., Mark D.(2009), From workplace air measurement results toward estimates of exposure? Development of a strategy to assess exposure to manufactured nano-objects. J Nanopart Res. 2009;11(8):1867-1881. DOI 10.1007/s11051-009-9772-1.10.1007/s11051-009-9772-1]Search in Google Scholar
[[5] Friedrichs S., Schulte J. (2007), Environmental, health and safety aspects of nanotechnology implications for the R&D in (small) companies, Science and Technology of Advanced Materials 8 (2007) 12-18. 10.1016/j.stam.2006.11.020]Search in Google Scholar
[[6] Hoyt V. W., Mason E.(2008), Nanotechnology: emerging health issues, Journal of Chemical Health & Safety (III/IV 2008) 10-15.10.1016/j.jchas.2007.07.015]Search in Google Scholar
[[7] Podgórski A., Balazy A., Gradoń L. (2006), Application of Nanofibers to Improve the Filtration Efficiency of the Most Penetrating Aerosol Particles in Fibrous Filters, Chem. Eng. Sci. 61:6804-6815.]Search in Google Scholar
[[8] Gradoń L., Podgórski A., Balazy A. (2005), Filtration of Nanoparticles in the Nanofibrous filters. FILTECH EUROPA 2005 - Conference Proceedings, Wiesbaden, Germany, vol. II, 178-185.]Search in Google Scholar
[[9] Brochocka A. (2001), Characteristics of melt-blown filter materials produced by simultaneous blowing of polymer melt from two extruders, Fibres & Textiles in Eastern Europe, 66-69.]Search in Google Scholar
[[10] Brochocka A., Makowski K., Majchrzycka K.(2012), Penetration of different nanoparticles through melt-blown filter media used for respiratory protective devices, Textile Research Journal, Vol.82(18), 1906-919]Search in Google Scholar
[[11] Yang W., Peters J.I., Williams R.O. III (2008), Inhaled nanoparticles - A current review, International Journal of Pharmaceutics 356: 239-247.10.1016/j.ijpharm.2008.02.011]Search in Google Scholar
[[12] Brochocka A., Majchrzycka K., Makowski K., Grzybowski P. (2013), Efficiency of Filtering Materials Used in Repiratory Protective Devices Against Nanoparticles, JOSE 2013, Vol.19 No. 2, 285-295.]Search in Google Scholar
[[13] Kim S.Ch., Harrington M.S., Pui D.Y.H. (2007), Experimental study of nanoparticles penetration through commercial filter media, Journal of Nanoparticle Research 9, 117-125.10.1007/s11051-006-9176-4]Search in Google Scholar
[[14] Brochocka A., Ruszkowski K.(2000), Some aspects of manufactiring electret nonwoven filters by a conventional method with utilisation of the triboelectric effect - Fibres and Textiles in Eastern Europe, July/September 2000, No. 3, Vol.8, 69-72.]Search in Google Scholar
[[15] Fjeld R.A., Ownes T.M.(1998), The Effect of Particle Charge on Penetration in an Electret Filter, IEEE Transactions on Industry Applications, Vol. 24, No 4, 1988, 725-731.]Search in Google Scholar
[[16] Tsai P.P., Wadsworth Larry C.(1995), Electrostatic Charging of Melt Blown Webs for High-Efficiency Air Filters, in: Advances in Filtration and Separation Technology, American Filtration and Separation Society, Vol.9, 473, 1995.]Search in Google Scholar
[[17] Tsai P.P., Wadsworth Larry C.(1996), Effect of Polymer Properties on the Electrostatic Charging of Different Media Structures for Air Filters, Conference Proceedings, SPE, ANTEC 96, Indianapolis, 3642.]Search in Google Scholar
[[18] Tsai P.P., Schreuder-Gibson H., Gibson P. (2002) Different Electrostatic Methods for Making Electret Filters, Journal of Electrostatics, 54, 2002, 333-341.10.1016/S0304-3886(01)00160-7]Search in Google Scholar
[[19] Brown, R. C., Wake, D., Gray, R., Blackford, D. B., i Bostock, G. J. (1988), Effect of industrial aerosols on the performance of electrically charged filter material. Ann Occup Hyg, 32 (3), strony 271-294.]Search in Google Scholar
[[20] Wang, C. S. (2001),. Electrostatic forces in fibrous filters - a review. Powder Technology, 118 (1-2), strony 166-170. ]Search in Google Scholar
[[21] Ramakrishna, S., Fujihara, K., i Teo, W.E. (2005), An Introduction to Electrospinning and Nanofibers. World Scientific Publishing Co. Pte Ltd.10.1142/5894]Search in Google Scholar
[[22] Krucińska, I. (2001). The influence of technological parameters on the filtration efficiency of electret needled non-woven fabrics. Journal of Electrostatics, 56 (2), strony 143-153.]Search in Google Scholar
[[23] Urbaniak-Domagała W., Wrzosek H., Szymanowski H., Majchrzycka K., Brochocka A.(2010) Plasma Modification of Filter Nonwovens Used for the Protection of Respiratory Tracts, Fibres & Textiles In Eastern Europe 2010; Vol. 18, No 6(83); 94-99.]Search in Google Scholar
[[24] Gui-qiu Ma, Jing-jiang Zhai, Ben Liu, Ding-hai Huang, Jing Sheng (2012) Plasma modification of polypropylene surface and grafting copolimerization of styrene onto polypropylene , Chinese Journal of Polymer Science, Vol.30, No.3, 2012, 423-435.]Search in Google Scholar
[[25] Brochocka A., Majchrzycka K. (2009) Technology for the Production of Bioactive Melt-Blown Filtration Materials Applied to Respiratory Protective Devices. Fibres & Textiles in Eastern Europe. 2009;17(5): 2-98.]Search in Google Scholar
[[26] Stephen B. Martin Jr, Ernest S. Moyer. 2000. Electrostatic Respirator Filter Media: Filter Efficiency and Most Penetrating Particle Size Effects. Applied Occupational and Environmental Hygiene, Vol. 15:(8) 609-617;10.1080/1047322005007561710957816]Search in Google Scholar
[[27] Huang H.L., Wang D.M., Kao S.T., Yang S., Huang Y.Ch. 2007. Removal of monodisperse liquid aerosols by using the polysulfone membrane filters. Separation and Purification Technology 54:96-10310.1016/j.seppur.2006.08.012]Search in Google Scholar
[[28] Brochocka A., Majchrzycka K., Makowski K. (2013) Modified Melt-Blown Nonwovens for Respiratory Protective Devices Against Nanoparticles - Fibres and Textiles in Eastern Europe 2013, 21, 49(100), 106-111.]Search in Google Scholar
[[29] Donnald G. Legrand, John T.Bendler, Handbook of Polycarbonate Science and Technology, Marcel Dekker, New York, NY 10016, 2000]Search in Google Scholar
[[30] Rengasamy S., Miller A., Vo E., Eimer B. C. 2013. Filter Performance Degradation of Electrostatic N95 and P100 Filtering Facepiece Respirators by Dioctyl Phthalate Aerosol Loading. Journal of Engineered Fibers and Fabrics, Volume 8, (3 ): 62-69);10.1177/155892501300800307]Search in Google Scholar
[[31] Patent. Poland, No. 212 2007, (2011)]Search in Google Scholar
[[32] Standard EN 13274-7: 2008 Respiratory protective devices. Methods of test. Part 7: Determination of particle filter penetration.]Search in Google Scholar
[[33] Standard EN 13274-3:2001 Respiratory protective devices. Methods of test. Part 3: Determination of breathing resistance.]Search in Google Scholar
[[34] Krucińska I., Strzembosz W., Majchrzycka K., Brochocka A., Sulak K., Biodegradable Particle Filtering Half-masks for Respiratory Protection, FIBRES & TEXTILES in Eastern Europe 2012; 20, 6B(96): 77-83.]Search in Google Scholar
[[35] Brochocka A., Makowski K., Filtering half masks for respiratory protection against nanoparticles - containing aerosols, Chemical Industry, 93/1/2014: 93-98. ]Search in Google Scholar