[[1] Gedeon M. (2009).The importance of Contact Force, Technical Tidbits 6, a publication of Brush Wellman Inc.]Search in Google Scholar
[[2] Gunnarsson E., Karsteen M., Berglin L., Stray J. (2014). A novel technique for direct measurement of contact resistance between interlaced conductive yarns in a plain weave, Textile Research Journal, 11. Available from: www. trjsagepub.com]Search in Google Scholar
[[3] Banaszczyk J., De Mey G., Schwarz A., Van Langenhove L. (2009). Current distribution modelling in electroconductive fabrics, Fibers& Textiles in Eastern Europe, 17, 2(73), 28-33]Search in Google Scholar
[[4] Banaszczyk J., De Mey G., Anca A., et al. (2009). Contact resistance investigation between stainless steel electroconductive yarns. In: MIXDES-16th international conference mixed design of integrated circuits & systems, 417-419]Search in Google Scholar
[[5] Dhawan A., Seyam A.M., Ghosh T.K., et al. (2004). Woven fabrics as electrical circuits: Part I: Evaluating interconnect methods. Textile Research Journal, 74, 913-91910.1177/004051750407401011]Search in Google Scholar
[[6] Banaszczyk J., Anca A., De Mey G. (2009). Infrared thermography of electroconductive woven textiles, QIRT J, 6, 163-17310.3166/qirt.6.163-173]Search in Google Scholar
[[7] Atalay O., Kennon W.R., Hussain M.D. (2013). Textile-Based Weft Knitted Strain Sensors: Effect of Fabric Parameters on Sensor Properties, Sensors, 13, 11114-11112710.3390/s130811114381264523966199]Search in Google Scholar
[[8] Atalay O., Kennon W.R. (2014). Knitted Strain Sensors: Impact of Design Parameters on Sensing Properties, Sensors, 14, 4712-473010.3390/s140304712400396524608010]Search in Google Scholar
[[9] Zhang H.; Tao X., Wang S., Yu T. (2005). Electromechanical properties of knitted fabric made from conductive multifilament yarn under unidirectional extension, Tex. Res. J., 75, 598-606]Search in Google Scholar
[[10] Li L., Song L., Feng D., Tao H., Wai M.A., Kwok-Shing W. (2012). Electromechanical analysis of length-related resistance and contact resistance of conductive knitted fabrics, Tex. Res. J., Issue August 2012]Search in Google Scholar
[[11] http://www.elektrisola.com/conductor-materials/platedwires/silver-plated-copper.html]Search in Google Scholar
[[12] http://www.bekaert.com/en/products/basic-materials/textile/stainless-steel-fibers-for-shielding-textiles-bekinox]Search in Google Scholar
[[13] TETRA project WINTEX Advanced woven structures for intelligent textiles (2014-2015), financial support of IWT Flanders. Available from: <www.wintex.be>]Search in Google Scholar
[[14] Meul J. (2015). Study of electro-conductive contacts in hybrid woven fabrics, Master thesis, Ghent University]Search in Google Scholar
[[15] Scheppens E. (2015). Influence of washing on textile materials with electro-conductive yarn, Bachelor thesis, University College Ghent]Search in Google Scholar
[[16] http://www.jmp.com/en_be/home.html]Search in Google Scholar
[[17] Aim TTi brochure. Available from: <http://www.aimtti.com/ product-category/dc-power-supplies/aim-el-rseries>]Search in Google Scholar
[[18] Fluke 83 V and 87 V Digital Multimeters. Available from: http://en-us.fluke.com/products/digital-multimeters/]Search in Google Scholar
[[19] ISO 12947-2 (1998). Determination of the abrasion resistance of fabrics by Martindale method. Part 2: Determination of specimen breakdown ]Search in Google Scholar