[1. Biglar M., Gromada M., Stachowicz F., Trzepieciński T. (2015), Optimal configuration of piezoelectric sensors and actuators for active vibration control of a plate using a genetic algorithm, Acta Mechanica, 226(10), 3451-3462.10.1007/s00707-015-1388-1]Search in Google Scholar
[2. Cai W., Fu C., Gao J., Guo Q., Deng X., Zhang C. (2011), Preparation and optical properties of barium titanate thin films, Physica B, 406, 3583-3587.10.1016/j.physb.2011.06.041]Search in Google Scholar
[3. Choi M.-S., Kim S.-H., Kim Y.-H., Kim I.W., Jeong S.-J., Song J.-S., Lee J.-S. (2008), Application of Ag–ceramic composite electrodes to low firing piezoelectric multilayer ceramic actuators, Journal of Electroceramics, 20, 225-229.10.1007/s10832-007-9181-8]DOI öffnenSearch in Google Scholar
[4. Duran P., Gutierrez D., Tartaj J., Moure C. (2002), Densification behaviour, microstructure development and dielectric properties of pure BaTiO3 prepared by thermal decomposition of (Ba,Ti)-citrate polyester resins, Ceramics International, 28, 283-292.10.1016/S0272-8842(01)00092-X]DOI öffnenSearch in Google Scholar
[5. Ertuğ B. (2013), The overview of the electrical properties of barium titanate American Journal of Engineering Research, 2(8), 1-7.]Search in Google Scholar
[6. Hackenberger W.S., Pan M.-J., Vedula V., Pertsch P., Cao W., Randall C.A., Shrout T.R. (1998), Effect of grain size on actuator properties of piezoelectric ceramics, Smart Structures and Materials 1998: Smart Materials Technologies, 3324, 28-34.10.1117/12.316878]Search in Google Scholar
[7. Hwang H.J, Niihara K. (1998), Perovskite-type BaTiO3 ceramics containing particulate SiC: Part II Microstructure and mechanical properties, Journal of Materials Science, 33, 549-558.]Search in Google Scholar
[8. Kao C.F., Yang W.D. (1999), Preparation of barium strontium titanate powder from citrate precursor, Applied Organometallic Chemistry, 13, 383-397.10.1002/(SICI)1099-0739(199905)13:5<383::AID-AOC836>3.0.CO;2-P]Search in Google Scholar
[9. Kholodkova A., Danchevskaya M., Fionov A. (2012), Study of nanocrystalline barium titanate formation in water vapour conditions, NANOCON Conference, 23-25.10.2012, Brno, Czech Republic.]Search in Google Scholar
[10. Kim H.-T., Kim J.-H., Jung W.-S., Yoon D.-H. (2009), Effect of starting materials on the properties of solid-state reacted barium titanate powder, Journal of Ceramic Processing Research, (10)6, 753-757.]Search in Google Scholar
[11. Luo J, Qiu J., Zhu K., Du J. (2011), Effects of the calcining temperature on the piezoelectric and dielectric properties of 0.55PNN-0.45PZT ceramics, Ferroelectric, 425(1), 90-97.]Search in Google Scholar
[12. Miot C., Proust C., Husson E. (1995), Dense ceramics of BaTiO3 produced from powders prepared by a chemical process, Journal of European Ceramic Society, 15, 1163-1170.10.1016/0955-2219(95)00090-9]Search in Google Scholar
[13. Moura F., Simoes A.Z., Aguiar E.C., Nogueira I.C., Zaghete M.A., Varela J.A., Longo E. (2009), Dielectric investigations of vanadium modified barium zirconium titanate ceramics obtained from mixed oxide method, Journal of Alloys and Compounds, 479, 280-283.10.1016/j.jallcom.2008.12.098]Search in Google Scholar
[14. Nguyen D.Q., Lebey T., Castelan P., Bley V., Boulos M., Guil-lemet-Fritsch S., Combettes C., Durand B. (2007), Electrical and physical characterization of bulk ceramics and thick layers of barium titanate manufactured using nanopowders, Journal of Materials Engineering and Performance, 16(5), 626-634.10.1007/s11665-007-9110-7]Search in Google Scholar
[15. Othman K.I., Hassan A.A., Abdelal O.A.A., Elshazly E.S., Ali M.E.-S., El-Raghy S.M., El-Houte S. (2014), Formation mechanism of barium titanate by solid-state reactions, International Journal of Scientific & Engineering Research, (5)7, 1460-1465.]Search in Google Scholar
[16. Prado L.R., de Resende N.S., Silva R.S., Egues S.M.S., Salazar-Banda G.R. (2016), Influence of the synthesis method on the preparation of barium titanate nanoparticles, Chemical Engineering and Processing: Process Intensification, 103, 12-20.10.1016/j.cep.2015.09.011]Search in Google Scholar
[17. Stojanovic B.D. (1999), Advanced in Sintered Electronic Materials, Advanced Science and Technology of Sintering, Kluwer Academic/Plenum Publishers, New York.10.1007/978-1-4419-8666-5_52]Search in Google Scholar
[18. Vijatović M.M., Bobić J.D., Stojanović B.D. (2008), History and challenges of barium titanate: Part II, Science of Sintering, 40, 235-244.10.2298/SOS0803235V]DOI öffnenSearch in Google Scholar
[19. Yoon D.-H., Lee B.I. (2004), Processing of barium titanate tapes with different binders for MLCC applications: Part I: Optimization using design of experiments, Journal of European Ceramic Society, 24, 739-752.10.1016/S0955-2219(03)00333-9]Search in Google Scholar
[20. Yoshikawa S., Shrout T. (1993), Multilayer piezoelectric actuators – structures and reliability, AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 34th and AI-AA/ASME Adaptive Structures Forum, La Jolla, CA, 19-22.04.1993, Technical Papers. Pt. 6, 3581-3586.]Search in Google Scholar
[21. Zheng P., Zhang J.L., Tan Y.Q., Wang C.L. (2012), Grain-size effects on dielectric and piezoelectric properties of poled BaTiO3 ceramics, Acta Materialia, 60, 5022-5030.10.1016/j.actamat.2012.06.015]DOI öffnenSearch in Google Scholar