rss_2.0Physics FeedSciendo RSS Feed for Physics Feed Flights on Blue Origin's New Shepard<abstract> <title style='display:none'>Abstract</title> <p>Blue Origin's New Shepard launch vehicle made its first flight above the Kármán Line, returning safely to Earth in November 2015. At the time when this paper is being written (February 2021), the system has conducted 14 flights, including 10 with research and education payloads aboard. More than 100 payloads have exercised a wide range of capabilities and interfaces, from small cubesat-form factor student payloads to large custom payloads of nearly 100 kg. Investigations have spanned a wide range of high-altitude and microgravity research objectives, as well as raising technology readiness level (TRL) on diverse hardware. This paper summarizes New Shepard's payload missions to date, and presents standardized and custom accommodations, both in the shirtsleeve cabin and directly exposed to the space environment.</p> </abstract>ARTICLE2021-03-20T00:00:00.000+00:00Using Tapered Channels to Improve LAD Performance for Cryogenic Fluids: Suborbital Testing Results<abstract> <title style='display:none'>Abstract</title> <p>Improvement of cryogenic fluid storage and transfer technology for in-space propulsion and storage systems is required for long-term space missions. Screened channel liquid acquisition devices (LADs) have long been used with storable propellants to deliver vapor-free liquid during engine restart and liquid transfer processes. The use of LADs with cryogenic fluids is problematic due to low temperatures associated with cryogenic fluids. External heat leaks will cause vapor bubbles to form within the LADs that are difficult to remove in the existing designs. A tapered LAD channel has been proposed to reliably remove vapor bubbles within the device without costly thrusting maneuvers or active separation systems. A model has been developed to predict bubble movement within tapered LAD channels, and subsequent ground testing was completed with a simulant fluid to provide model validation data. Suborbital microgravity testing of tapered LAD technology was recently completed with two different simulant fluids and demonstrated that the concept can passively expel vapor bubbles within the channel. Two additional suborbital flights have been funded to further develop this technology by investigating the performance of larger scale versions of the design.</p> </abstract>ARTICLE2021-06-26T00:00:00.000+00:00Shared Metabolic Remodeling Processes Characterize the Transcriptome of within Various Suborbital Flight Environments<abstract> <title style='display:none'>Abstract</title> <p>The increasing availability of flights on suborbital rockets creates new avenues for the study of spaceflight effects on biological systems, particularly of the transitions between hypergravity and microgravity. This paper presents an initial comparison of the responses of Arabidopsis thaliana to suborbital and atmospheric parabolic flights as an important step toward characterizing these emerging suborbital platforms and their effects on biology. Transcriptomic profiling of the response of the Arabidopsis ecotype Wassilewskija (WS) to the aggregate suborbital spaceflight experiences in Blue Origin New Shepard and Virgin Galactic SpaceShipTwo revealed that the transcriptomic load induced by flight differed between the two flights, yet was biologically related to traditional parabolic flight responses. The sku5 skewing mutant and 14-3-3κ:GFP regulatory protein overexpression lines, flown in the Blue Origin and parabolic flights, respectively, each showed altered intra-platform responses compared to WS. An additional parabolic flight using the F-104 Starfighter showed that the response of 14-3-3κ:GFP to flight was modulated in a similar manner to the WS line. Despite the differing genotypes, experimental workflows, flight profiles, and platforms, differential gene expression linked to remodeling of central metabolic processes was commonly observed in the flight responses. However, the timing and directionality of differentially expressed genes involved in the conserved processes differed among the platforms. The processes included carbon and nitrogen metabolism, branched-chain amino acid degradation, and hypoxic responses. The data presented herein highlight the potential for various suborbital platforms to contribute insights into biological responses to spaceflight, and further suggest that in-flight fixation during suborbital experiments will enhance insights into responses during each phase of flight.</p> </abstract>ARTICLE2021-01-29T00:00:00.000+00:00A Rapid Fabrication Methodology for Payload Modules, Piloted for the Observation of Queen Honey Bees () in Microgravity<abstract> <title style='display:none'>Abstract</title> <p>Microgravity experiment modules for living organisms have been instrumental to space research, yet their design remains complex and costly. As the private space sector enables more widely available payloads for researchers, it is increasingly necessary to design experimental modules innovatively so that they are proportionately accessible. To ease this bottleneck, we developed a rapid fabrication methodology for producing custom modules compatible with commercial payload slots. Our method creates a unified housing geometry, based on a given component layout, which is fabricated in a digital design and subtractive manufacturing process from a single lightweight foam material. This module design demonstrated a 25–50% reduction in chassis weight compared with existing models, and is extremely competitive in manufacturing time, simplicity, and cost. To demonstrate the ability to capture data on previously limited areas of space biology, we apply this methodology to create an autonomous, video-enabled module for sensing and observing queen and retinue bees aboard the Blue Origin New Shepard 11 (NS-11) suborbital flight. To explore whether spaceflight impacts queen fitness, results used high-definition visual data enabled by the module's compact build to analyze queen-worker regulation under microgravity stress (n = 2, with controls). Overall, this generalizable method for constructing experimental modules provides wider accessibility to space research and new data on honey bee behavior in microgravity.</p> </abstract>ARTICLE2021-06-01T00:00:00.000+00:00Pioneering the Approach to Understand a Trash-to-Gas Experiment in a Microgravity Environment<abstract> <title style='display:none'>Abstract</title> <p>The Orbital Syngas/Commodity Augmentation Reactor (OSCAR) project investigated hardware and engineering development for waste conversion operations related to trash deconstruction and repurposing for long duration space missions. Operations of the trash-to-gas system were investigated to compare microgravity (μg) and Earth gravity environments. The OSCAR system has been demonstrated in other μg platforms, but here the performance and results on the Blue Origin New Shepard Suborbital Vehicle are discussed. The OSCAR suborbital operation demonstrated the introduction of trash into a high temperature reactor for solid to gas conversion, ignition of mixed trash feedstock, combustion during μg, and subsequent gas collection processes in a flight automated sequence. An oxygen (O<sub>2</sub>)- and steam-rich environment was created within the reactor for ignition conditions, and the product gases were quantified to verify the reaction product composition. This paper focuses on the chemistry processes of the reactor, and gas and solid product analysis of the μg and gravity conditions. The gas production, reactor thermal profile, and mass and carbon conversion results validated confidence in the system design to continue the advancement of this technology for future spaceflight implementations.</p> </abstract>ARTICLE2021-05-24T00:00:00.000+00:00The Impact of Hindlimb Suspension on the Rat Eye: A Molecular and Histological Analysis of the Retina<abstract> <title style='display:none'>Abstract</title> <p>The Spaceflight Associated Neuro-ocular Syndrome (SANS) is hypothesized to be associated with microgravity-induced fluid shifts. There is a need for an animal model of SANS to investigate its pathophysiology. We used the rat hindlimb suspension (HS) model to examine the relationship between the assumed cephalad fluid shifts, intraocular (IOP) pressure and the molecular responses in the retina to the prolonged change in body posture. Long evans rats were subjected to HS up to 90 days. Animals completing 90-day suspension were further studied for recovery periods up to 90 additional days in normal posture. With respect to baseline, the average IOP increase in HS animals and the rate of change varied by cohort. Transcriptomics evidence supported a response to HS in the rat retina that was affected by age and sex. Several molecular networks suggested stress imposed by HS affected the retinal vasculature, oxidative and inflammation status, pigmented epithelium and glia. The CSNK1A1-TP53 pathway was implicated in the response in all cohorts. Sex-specific genes were involved in cytoprotection and may explain sex-dependent vulnerabilities to certain eye diseases. These results support the hypothesis that changes in the biology of the retina subjected to simulated microgravity involve both the neural and vascular retina.</p> </abstract>ARTICLE2021-09-18T00:00:00.000+00:00Space Flight Cultivation for Radish () in the Advanced Plant Habitat<abstract> <title style='display:none'>Abstract</title> <p>In preparation of a flight experiment, ground-based studies for optimizing the growth of radishes (Raphanus sativus) were conducted at the ground-based Advanced Plant Habitat (APH) unit at the Kennedy Space Center (KSC), Florida. The APH provides a large, environmentally controlled chamber that has been used to grow various plants, such as Arabidopsis, wheat, peppers, and now radish. In support of National Aeronautics and Space Administration (NASA)'s goals to provide astronauts with fresh vegetables and fruits in a confined space, it is important to extend the cultivation period to produce substantial biomass. We selected Raphanus sativus cv. Cherry Belle as test variety both for preliminary tests and flight experiments because it provides edible biomass in as few as four weeks, has desirable secondary metabolites (glucosinolates), is rich in minerals, and requires relatively little space. We report our strategies to optimize the growth substrate, watering regimen, light settings, and planting design that produces good-sized radishes, minimizes competition, and allows for easy harvesting. This information will be applicable for growth optimization of other crop plants that will be grown in the APH or other future plant growth facilities.</p> </abstract>ARTICLE2021-08-23T00:00:00.000+00:00APL JANUS System Progress on Commercial Suborbital Launch Vehicles: Moving the Laboratory Environment to Near Space<abstract> <title style='display:none'>Abstract</title> <p>Multiple private companies are building suborbital reusable launch vehicles possessing vastly different designs. Many of these companies originally focused on space tourism; however, revolutionary applications for scientific and engineering research as well as technology demonstrations and instrument development are emerging. The dramatic reduction in cost over traditional launch systems as well as a guaranteed (and rapid) safe payload return enable many new launch vehicle applications. These new capabilities will essentially move the laboratory environment up to the edge of space. To make use of these novel launch vehicles, the John Hopkins University Applied Physics Laboratory has established a Commercial Suborbital Program with a core system (JANUS) to support and enable many future suborbital missions. This program has already conducted six suborbital flight missions to establish vehicle interfaces and analyze the suitability and limits of each flight environment. Additionally, this program has also been selected by the NASA Flight Opportunities Program for five additional operational suborbital missions. Here we present the results of our completed missions as well as descriptions of future selected missions scheduled for 2021–2023.</p> </abstract>ARTICLE2021-01-29T00:00:00.000+00:00The Adhesive Response of Regolith to Low-Energy Disturbances in Microgravity<abstract> <title style='display:none'>Abstract</title> <p>Small, airless bodies are covered by a layer of regolith composed of particles ranging from μm-size dust to cm-size pebbles that evolve under conditions very different than those on Earth. Flight-based microgravity experiments investigating low-velocity collisions of cm-size projectiles into regolith have revealed that certain impact events result in a mass transfer from the target regolith onto the surface of the projectile. The key parameters that produce these events need to be characterized to understand the mechanical behavior of granular media, which is composed of the surfaces of small bodies. We carried out flight and ground-based research campaigns designed to investigate these mass transfer events. The goals of our experimental campaigns were (1) to identify projectile energy thresholds that influence mass transfer outcomes in low-energy collision events between cm-size projectiles and μm-size regolith, (2) to determine whether these mass transfer events required a microgravity environment to be observed, and (3) to determine whether the rebound portion of these collision events could be replicated in a laboratory drop tower environment. We found that (1) mass transfer events occurred for projectile rebound accelerations &lt;7.8 m/s<sup>2</sup> and we were unable to identify a corresponding impact velocity threshold, (2) mass transfer events require a microgravity environment, and (3) ourdrop tower experiments were able to produce mass transfer events. However, drop tower experiments do not exactly reproduce the free-particle impacts and rebound of the long-duration microgravity experiments and yielded systematically lower amounts of the overall mass transferred.</p> </abstract>ARTICLE2021-01-29T00:00:00.000+00:00Liquid Propellant Mass Measurement in Microgravity<abstract> <title style='display:none'>Abstract</title> <p>The Modal Propellant Gauging (MPG) experiment has demonstrated sub-1% gauging accuracy under laboratory conditions on both flight hardware and subscale tanks. Recently, MPG was adapted for flight on Blue Origin's New Shepard vehicle and has flown twice, achieving equilibrated, zero-g surface configurations of propellant simulant at three different fill fractions. Flight data from MPG missions on New Shepard P7 and P9 show agreement between known and measured propellant levels of 0.3% for the fill fractions investigated in the present study. Two approaches for estimating zero-g propellant mass are described here. Both approaches rely on measuring shifts in modal frequencies of a tank excited by acoustic surface waves and subject to fluid mass loading by the propellant. In the first approach, shifts in the lowest mode frequency (LMF) are measured and associated with liquid fill-level changes. In the second approach, 1-g modal spectra at a range of known fill levels are used in a cross-correlation calculation to predict fill levels associated with a zero-g modal spectrum. Flight data for both approaches are consistent with finite element predictions using a simple fluid–structure interaction model. In both settled and unsettled microgravity environments, MPG meets or exceeds NASA Roadmap goals for in-space propellant mass gauging.</p> </abstract>ARTICLE2021-02-26T00:00:00.000+00:00Research on dose correction method of vehicle-borne environmental radiation measurement equipment<abstract> <title style='display:none'>Abstract</title> <p>This study establishes a near-ground reference radiation field based on typical radionuclides of the Fukushima accident in response to the need for vehicle-borne environmental radiation measurement equipment that can accurately evaluate the environmental dose of nuclear accidents. The Monte Carlo code FLUKA is used to study the environmental dose of such equipment in the early and mid-late reference radiation fields of nuclear accidents. Results of the air dose rate at 1 m above the ground were corrected to eliminate data difference between diverse measurement platforms. Simulation results show that t he dose correction factor (CF) fluctuates at approximately 0.8813 in the early reference radiation field and at approximately 0.6711 in the mid-late reference radiation field. This deviation of the dose CF in the early and mid-late reference radiation fields is within 2% and is not affected by the change in detector position. This research can be applied to obtain more accurate measurement of an ambient dose in the near-ground radiation field and support the vehicle-borne environmental radiation measurement technology.</p> </abstract>ARTICLE2021-09-17T00:00:00.000+00:00European inter-comparison studies as a tool for perfecting irradiated food detection methods<abstract> <title style='display:none'>Abstract</title> <p>In this paper, we present the results of inter-comparison studies on identification of irradiated food carried out by the leading European laboratories from 1991 to 2018. In 1990s, the Federal Institute for Health Protection of Consumers and Veterinary Medicine in Germany played the leading role in the organization of the inter-laboratory tests on this subject. At the beginning of the present century, the Spanish Agency for Food Safety and Nutrition and Food National Spanish Centre took over this role. In total, 47 international tests were carried out in which nearly 500 samples of alimentary products were analysed in 37 laboratories from 14 European countries. The tests were aimed at proving the reliability of analytical methods – thermoluminescence (TL), photostimulated luminescence (PSL), and electron paramagnetic resonance (EPR) spectroscopy – for identification of specific irradiated food products and to control the analytical skills and experience of participating laboratories. The results made possible a discussion on why some irradiated food samples are more difficult for identification. In general, the tests showed that TL measurements of products such as herbs, nuts, peppers, and raisins, and EPR studies of fish and chicken bones, fresh strawberries, and dried fruits could be used as reliable control methods. The challenge that control laboratories are facing now, is related to the identification of complex food products such as diet supplements or biopharmaceuticals, in which only some additives are irradiated.</p> </abstract>ARTICLE2021-09-17T00:00:00.000+00:00Gamma radiation calculations and gamma blocker design for the high-energy beam transport region of the European Spallation Source<abstract> <title style='display:none'>Abstract</title> <p>The purpose of this paper is to present the Monte-Carlo calculations performed to design a special element called gamma blocker (GB), necessary to stop the gamma radiation in the Accelerator-to-Target (A2T) section of European Spallation Source (ESS) linac. Very high levels of gamma radiation emitted backward from the activated target through the beam pipe could effectively block any human intervention close to the beam transport system. The residual dose rate in the linac tunnel was calculated without and with different GBs as a function of time. The final GB material and dimensions are proposed.</p> </abstract>ARTICLE2021-09-17T00:00:00.000+00:00The use of gamma irradiation to stimulate bioactive compound synthesis in submerged cultures<abstract> <title style='display:none'>Abstract</title> <p><italic>Inonotus obliquus</italic> is a parasite on the birch and other trees and is also a well-known medicinal mushroom. Its sterile conk is highly sought for its bioactive compounds such as phenols, polysaccharides, triterpenoids, and steroids. It was traditionally used to treat various gastrointestinal diseases, viral and parasitic infections, to counteract the progression of cancers, and to stimulate the immune system. We used acute gamma irradiation, followed by short-term submerged cultivation, as an oxidative stress inducer to enhance the synthesis of mycelial metabolites. The 300 Gy and 400 Gy doses showed the best results across the whole experimental design. Each assayed criterion had a different corresponding optimal stimulation dose. In one experiment, sublethal doses of irradiation triggered the dry weight of the cultured mycelium to increase by 19.764%. The free radical scavenging potential of the mycelium extracts increased by 79.83%. The total phenolic content of mycelium extracts and culture broth increased by 55.7% and 62.987%, respectively. The total flavonoid and sinapinic acid content of the broth increased by 934.678% and 590.395%, respectively. As such, gamma irradiation pre-treatment of the mycelial inoculum proved an interesting, economically and environmentally effective tool for stimulating secondary metabolite synthesis in submerged mycelium cultures.</p> </abstract>ARTICLE2021-09-17T00:00:00.000+00:00The art design of industrialised manufacturing furniture products based on the simulation of mathematical curves<abstract><title style='display:none'>Abstract</title><p>After a lot of literature reading and practical research, the paper uses the parametric modelling method of curve simulation characteristic line to establish the mathematical model of the furniture product leg shape. This article first uses the surface construction method to analyse the composition of the leg size of the industrialised production and manufacture of furniture products, and makes the solid modelling according to the construction method of non-uniform rational spline mathematical curve and surface simulation. At the same time, the parameter function of furniture leg type is set on SolidWorks, and the research results obtained in the paper are found by simulation, which opens up a new research path for the application of mathematical curve model in furniture design.</p></abstract>ARTICLE2021-09-24T00:00:00.000+00:00Posters lectures bearing capacity of shallow strip footing embedded in slope resting on two-layered soil<abstract><title style='display:none'>Abstract</title><p>In this paper, the limit equilibrium method with the pseudo-static approach is developed in the evaluation of the influence of slope on the bearing capacity of a shallow foundation. Particle swarm optimisation (PSO) technique is applied to optimise the solution. Minimum bearing capacity coefficients of shallow foundation near slopes are presented in the form of a design table for practical use in geotechnical engineering. It has been shown that the seismic bearing capacity coefficients reduce considerably with an increase in seismic coefficient. Be sides, the magnitude of bearing capacity coefficients decreases further with an increase in slope inclination.</p></abstract>ARTICLE2021-09-07T00:00:00.000+00:00Statistical analysis of typical elevator accidents in China from 2002 to 2019<abstract><title style='display:none'>Abstract</title><p>By utilising data from official sources, a statistical analysis was made on the elevator accidents that occurred in China during the period 2002 to 2019 on five aspects namely elevator type, occurrence stage, casualty’s identity, accident type and accident causes. The main purpose is to use the frequency and correlation among related factors to evaluate crucial causes, and to prevent similar accidents among technicians and users. Based on the statistical results and discussion, some proposals were put forward to the management of the responsible authorities for accident investigation and prevention of similar elevator accidents in the future.</p></abstract>ARTICLE2021-08-25T00:00:00.000+00:00Laboratory tests and analysis of CIPP epoxy-resin internal liners used in pipelines – part I: comparison of tests and engineering calculations<abstract> <title style='display:none'>Abstract</title> <p>Tests that were carried out in order to obtain knowledge of the actual values of strength parameters obtained by CIPP liners that are used to repair pipelines. Specimens of liners made of high quality polyester felt cured with epoxy resin were subjected to tests. The scope of the performed studies corresponded with the scope of acceptance tests, which are carried out in the investment process during quality control of renovation works. Specimens of liners taken from sewers with 3 different diameters, i.e. 200mm, 350mm and 500mm were selected as representative for underground sewage networks. The obtained results enabled the calculations carried out in the course of design work to be verified, and differences between the model values of the strength parameters obtained from the calculations, and real values that are burdened with irregularities resulting from the conditions prevailing at a construction site and which were obtained for specimens taken from their built-in locations to be compared.</p> <p>The tests confirmed that it is possible to renovate - using CIPP liners - sewers with a lot of structural and material damage that negatively affects a liner‘s geometry. The implementation of the reinforcing internal coating in a sewer enables its further safe operation. The direct application value of the research involves the enlargement and clarification of knowledge concerning the actual load-bearing capacity of CIPP liners.</p> </abstract>ARTICLE2021-06-30T00:00:00.000+00:00en-us-1