1. bookAHEAD OF PRINT
Journal Details
License
Format
Journal
eISSN
2083-5892
First Published
13 Apr 2013
Publication timeframe
4 times per year
Languages
English
access type Open Access

A Characterization of Internally 4-Connected {P10 − {V1, V2}}-Minor-Free Graphs

Published Online: 05 May 2021
Volume & Issue: AHEAD OF PRINT
Page range: -
Received: 15 Sep 2020
Accepted: 17 Feb 2021
Journal Details
License
Format
Journal
eISSN
2083-5892
First Published
13 Apr 2013
Publication timeframe
4 times per year
Languages
English
Abstract

Let P10 be the Petersen graph. Let V−−8 = P10 − {v1, v2}, where v1 and v2 are the adjacent vertices of P10. In this paper, all internally 4-connected graphs that do not contain V−−8 as a minor are charaterized.

Keywords

MSC 2010

[1] N. Ananchuen and C. Lewchalermvongs, Internally 4-connected graphs with no {cube, V8}-minor, Discuss. Math. Graph Theory 41 (2021) 481–501. doi:10.7151/dmgt.220510.7151/dmgt.2205Search in Google Scholar

[2] C. Chun, D. Mayhew and J. Oxley, Constructing internally 4-connected binary matroids, Adv. Appl. Math. 50 (2013) 16–45. doi:10.1016/j.aam.2012.03.00510.1016/j.aam.2012.03.005Search in Google Scholar

[3] G. Ding, A characterization of graphs with no octahedron minor, J. Graph Theory 74 (2013) 143–162. doi:10.1002/jgt.2169910.1002/jgt.21699Search in Google Scholar

[4] G. Ding, C. Lewchalermvongs and J. Maharry, Graphs with no ̅P7-minor, Electron. J. Combin. 23 (2016) #P2.16. doi:10.37236/540310.37236/5403Search in Google Scholar

[5] G. Ding and C. Liu, Excluding a small minor, Discrete Appl. Math. 161 (2013) 355–368. doi:10.1016/j.dam.2012.09.00110.1016/j.dam.2012.09.001Search in Google Scholar

[6] M.N. Ellingham, E.A. Marshall, K. Ozeki and S. Tsuchiya, A characterization of K2,4-minor-free graphs, SIAM J. Discrete Math 30 (2014) 955–975. doi:10.1137/14098651710.1137/140986517Search in Google Scholar

[7] Z. Gaslowitz, E.A. Marshall and L. Yepremyan, The characterization of planar, 4-connected, K2,5-minor-free graphs. arXiv e-prints:1507.06800 (2015)Search in Google Scholar

[8] H. Hadwiger, Über eine Klassifikation der Streckenkomplexe, Vierteljahresschr. Naturforsch. Ges. Zürich 88 (1943) 133–143.Search in Google Scholar

[9] J. Maharry, A characterization of graphs with no cube minor, J. Combin. Theory Ser. B 80 (2000) 179–201. doi:10.1006/jctb.2000.196810.1006/jctb.2000.1968Search in Google Scholar

[10] J. Maharry, An excluded minor theorem for the octahedron plus an edge, J. Graph Theory 57 (2008) 124–130. doi:10.1002/jgt.2027210.1002/jgt.20272Search in Google Scholar

[11] J. Maharry and N. Robertson, The structure of graphs not topologically containing the Wagner graph, J. Combin. Theory Ser. B 121 (2016) 398–420. doi:10.1016/j.jctb.2016.07.01110.1016/j.jctb.2016.07.011Search in Google Scholar

[12] N. Martinov, Uncontractable 4-connected graphs, J. Graph Theory 6 (1982) 343–344. doi:10.1002/jgt.319006031010.1002/jgt.3190060310Search in Google Scholar

[13] W.T. Tutte, On the algebraic theory of graph colorings, J. Combin. Theory 1 (1966) 15–50. doi:10.1016/S0021-9800(66)80004-210.1016/S0021-9800(66)80004-2Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo