1. bookAHEAD OF PRINT
Journal Details
License
Format
Journal
eISSN
2083-5892
First Published
13 Apr 2013
Publication timeframe
4 times per year
Languages
English
access type Open Access

A Note on the Upper Bounds on the Size of Bipartite and Tripartite 1-Embeddable Graphs on Surfaces

Published Online: 20 Oct 2020
Volume & Issue: AHEAD OF PRINT
Page range: -
Received: 17 Feb 2020
Accepted: 06 Aug 2020
Journal Details
License
Format
Journal
eISSN
2083-5892
First Published
13 Apr 2013
Publication timeframe
4 times per year
Languages
English
Abstract

In this note, we show sharp upper bounds of the size of simple bipartite and tripartite 1-embeddable graphs on closed surfaces.

Keywords

MSC 2010

[1] D.V. Karpov, An upper bound on the number of edges in an almost planar bipartite graphs, J. Math. Sci. 196 (2014) 737–746. doi:10.1007/s10958-014-1690-910.1007/s10958-014-1690-9Search in Google Scholar

[2] S.G. Kobourov, G. Liotta and F. Montecchiani, An annotated bibliography on 1-planarity, Comput. Sci. Rev. 25 (2017) 49–67. doi:10.1016/j.cosrev.2017.06.00210.1016/j.cosrev.2017.06.002Search in Google Scholar

[3] A. Nakamoto, K. Noguchi and K. Ozeki, Cyclic 4-colorings of graphs on surfaces, J. Graph Theory 82 (2016) 265–278. doi:10.1002/jgt.2190010.1002/jgt.21900Search in Google Scholar

[4] T. Nagasawa, K. Noguchi and Y. Suzuki, Optimal 1-embedded graphs which triangulate other surfaces, J. Nonlinear Convex Anal. 19 (2018) 1759–1770.Search in Google Scholar

[5] G. Ringel, Ein Sechsfarbenproblem auf der Kugel, Abh. Math. Semin. Univ. Hambg. 29 (1965) 107–117. doi:10.1007/BF0299631310.1007/BF02996313Search in Google Scholar

[6] H. Von Schumacher, Ein 7-Farbensatz 1-einbettbarer Graphen auf der projektiven Ebene, Abh. Math. Semin. Univ. Hambg. 54 (1984) 5–14. doi:10.1007/BF0294143410.1007/BF02941434Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo