[
[1] S.S. Ahn, Y.H. Kim and J.M. Ko, Filters in commutative BE-algebras, Commun. Korean. Math. Soc. 27 (2012) 233–242. https://doi.org/10.4134/CKMS.2012.27.2.23310.4134/CKMS.2012.27.2.233
]Search in Google Scholar
[
[2] Z. Ciloglu and Y. Ceven, Commutative and bounded BE-algebras, Algebra 2013 (2013), Article ID 473714, 5 pages. https://doi.org/10.1155/2013/47371410.1155/2013/473714
]Search in Google Scholar
[
[3] E.Y. Deeba, A characterization of complete BCK-algebras, Math. Seminar Notes, 7 (1979) 343–349.
]Search in Google Scholar
[
[4] E.Y. Deeba, Filter theory of BCK-algebras, Math. Japon. 25 (1980) 631–639.
]Search in Google Scholar
[
[5] K. Iseki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japon. 23 (1979) 1–26.
]Search in Google Scholar
[
[6] Y.B. Jun, S.M. Hong, and J. Meng, Fuzzy BCK-filters, Math. Japon. 47 (1998) 45–49.10.1007/BF03008938
]Search in Google Scholar
[
[7] H.S. Kim and Y.H. Kim, On BE-algebras, Sci. Math. Japon. 66 (2006) 1299–1302. https://doi.org/10.32219/isms.66.1_−13
]Search in Google Scholar
[
[8] J. Meng, BCK-filters, Math. Japon. 44 (1996) 119–129.
]Search in Google Scholar
[
[9] B.L. Meng, On filters in BE-algebras, Sci. Math. Japon. 71 (2010) 201–207. https://doi.org/10.32219/isms.71._2−201
]Search in Google Scholar
[
[10] C. Muresan, Dense Elements and Classes of Residuated Lattices, Bull. Math. Soc. Sci. Math. Roumanie Tome 53(101) (2010) 11–24. https://www.jstor.org/stable/43679159.
]Search in Google Scholar
[
[11] P. Sun, Homomorphism theorems on dual ideals in BCK-algebras, Soo. J. Math. 26 (2000) 309–316.
]Search in Google Scholar