[
[1] P. Agliano, Prime spectra in modular varieties, Algebra Univ. 30 (1993) 581–597. https://doi.org/10.1007/BF0119538310.1007/BF01195383
]Search in Google Scholar
[
[2] E. Aichinger, Congruence lattices forcing nilpotency, J. Algebra and Its Appl. 17 (2) (2018). https://doi.org/10.1142/S021949881850033010.1142/S0219498818500330
]Search in Google Scholar
[
[3] L.P. Belluce, Spectral spaces and non-commutative rings, Commun. in Algebra 19 (7) (1991) 1855–1865. https://doi.org/10.1080/0092787910882423410.1080/00927879108824234
]Search in Google Scholar
[
[4] L.P. Belluce, Spectral closure for non-commutative rings, Commun. in Algebra 25 (5) (1997) 1513–1536. https://doi.org/10.1080/0092787970882593310.1080/00927879708825933
]Search in Google Scholar
[
[5] J. Czelakowski, Additivity of the commutator and residuation, Rep. Math. Logic 43 (2008) 109–132. https://doi.org/10.1007/978-3-319-21200-510.1007/978-3-319-21200-5
]Search in Google Scholar
[
[6] B.A. Davey, m-stone lattices, Canad. J. Math. 24 (6) (1972) 1027–1032. https://doi.org/10.4153/CJM-1972-104-x10.4153/CJM-1972-104-x
]Search in Google Scholar
[
[7] R. Freese and R. McKenzie, Commutator Theory for Congruence-modular Varieties, London Mathematical Society Lecture Note Series 125 (Cambridge University Press, 1987). https://doi.org/10.1112/blms/20.4.36210.1112/blms/20.4.362
]Search in Google Scholar
[
[8] N. Galatos, P. Jipsen, T. Kowalski and H. Ono, Residuated Lattices: An Algebraic Glimpse at Substructural Logics, Studies in Logic and The Foundations of Mathematics 151 (Elsevier, Amsterdam/Boston /Heidelberg /London /New York /Oxford /Paris /San Diego/San Francisco /Singapore /Sydney /Tokyo, 2007). https://doi.org/10.1016/s0049-237x(07)x8002-910.1016/S0049-237X(07)X8002-9
]Search in Google Scholar
[
[9] G. Georgescu and C. Mureşan, Congruence Boolean lifting property, J. Multiple-Valued Logic and Soft Comp. 29 (3–4) (2017) 225–274.
]Search in Google Scholar
[
[10] G. Georgescu and C. Mureşan, The reticulation of a universal algebra, Sci. Ann. Comp. Sci. XXVIII (2018) 67–113. https://doi.org/10.7561/SACS.2018.1.6710.7561/SACS.2018.1.67
]Search in Google Scholar
[
[11] J.E. Kist, Two characterizations of commutative Baer rings, Pacific J. Math. 50 (1974). https://doi.org/10.2140/pjm.1974.50.12510.2140/pjm.1974.50.125
]Search in Google Scholar
[
[12] A. Iorgulescu, Algebras of Logic as BCK Algebras (Editura ASE, Bucharest, 2008).
]Search in Google Scholar
[
[13] A. Joyal, Le théorème de Chevalley-Tarski et Remarques sur l‘algèbre constructive, Cahiers Topol. Géom. Différ. 16 (1975) 256–258.
]Search in Google Scholar
[
[14] C. Mureşan, Algebras of Many-valued Logic. Contributions to the Theory of Residuated Lattices, Ph.D. Thesis, 2009.
]Search in Google Scholar
[
[15] C. Mureşan, Co-stone residuated lattices, Annals of the University of Craiova, Math. Comp. Sci. Ser. 40 (2013) 52–75. https://doi.org/10.7561/SACS.2018.1.6710.7561/SACS.2018.1.67
]Search in Google Scholar
[
[16] P. Ouwehand, Commutator Theory and Abelian Algebras. arXiv:1309.0662 [math.RA].
]Search in Google Scholar
[
[17] D. Piciu, Algebras of Fuzzy Logic (Editura Universitaria Craiova, Craiova, 2007).
]Search in Google Scholar
[
[18] D. Schweigert, Tolerances and commutators on lattices, Bull. Austral. Math. Soc. 37 (2) (1988) 213–219. https://doi.org/10.1017/S000497270002674510.1017/S0004972700026745
]Search in Google Scholar
[
[19] H. Simmons, Reticulated rings, J. Algebra 66 (1980) 169–192. https://doi.org/10.1016/0021-8693(80)90118-010.1016/0021-8693(80)90118-0
]Search in Google Scholar