[
[1] M. Bakhshi, Nodal filters in residuated lattices, J. Intel. Fuzzy Syst. 30 (2016) 2555–2562. https://doi.org/10.3233/IFS-15180410.3233/IFS-151804
]Search in Google Scholar
[
[2] T.S. Blyth, Lattices and Ordered Algebraic Structures (Springer-Verlag, 2005).
]Search in Google Scholar
[
[3] R.A. Borzooei, M. Bakhshi and O. Zahiri, Filter theory of hyper residuated lattices, Quasigroups Related Syst. 22 (2014) 33–50.
]Search in Google Scholar
[
[4] R.A. Borzooei, A. Hasankhani, M.M. Zahedi and Y.B. Jun, On hyper K-algebras, J. Math. Japonica 1 (2000) 3305–3313.
]Search in Google Scholar
[
[5] C.C. Chang, Algebraic analysis of many-valued logics, Trans. Amer. Math. Soc. 88 (1958) 467–490. https://doi.org/10.1090/S0002-9947-1958-0094302-910.1090/S0002-9947-1958-0094302-9
]Search in Google Scholar
[
[6] Sh. Ghorbani, A. Hasankhani and E. Eslami, Hyper MV-algebra, Set-Valued Math. Appl. 1 (2008) 205–222.
]Search in Google Scholar
[
[7] P. Hájek, Metamathematics of Fuzzy Logic (Kluwer Academic Publisher, Dordrecht, 1998).10.1007/978-94-011-5300-3
]Search in Google Scholar
[
[8] J. Mittas and M. Konstantinidou, Sur un novelle génération de la notion de treillis. Les supertreillis et certaines de leurs proprités générals, Ann. Sci. Univ. Blaise Pascal (Clermont II), Sér. Math. Fasc. 25 (1989) 61–83.
]Search in Google Scholar
[
[9] H.P. Sankapanavar and S. Burris, A Course in universal algebra, Graduated Text Math. 78 (1981).
]Search in Google Scholar
[
[10] M. Ward and R.P. Dilworth, Residuated lattices, Trans. Amer. Math. Soc. 45 (1939) 335–354. https://doi.org/10.2307/199000810.2307/1990008
]Search in Google Scholar
[
[11] O. Zahiri, R.A. Borzooei and M. Bakhshi, Quotient hyper residuated lattices, Quasi-groups Related Syst. 20 (2012) 125–138.
]Search in Google Scholar