[
[1] The Dilworth Theorems, Selected papers of Robert P. Dilworth. Edited by Kenneth P. Bogart, Ralph Freese, and Joseph P.S. Kung, Contemporary Mathematicians (Birkhäuser Boston, Inc., Boston, MA, 1990). https://doi.org/10.1016/0001-8708(92)90026-h10.1016/0001-8708(92)90026-H
]Search in Google Scholar
[
[2] G. Grätzer, Standard ideals, Magyar Tud. Akad. Mat. Fiz. Oszt. Közl. 9 (1959) 81–97 (Hungarian).
]Search in Google Scholar
[
[3] G. Grätzer, Lattice Theory: Foundation (Birkhäuser Verlag, Basel, 2011).10.1007/978-3-0348-0018-1
]Search in Google Scholar
[
[4] G. Grätzer, The order of principal congruences of a bounded lattice, Algebra Univ. 70 (2013) 95–105. https://doi.org/10.1007/s00012-013-0242-310.1007/s00012-013-0242-3
]Search in Google Scholar
[
[5] G. Grätzer, The Congruences of a Finite Lattice, A “Proof-by-Picture” Approach, Second edition (Birkhäuser Verlag, Basel, 2016). https://doi.org/10.1007/0-817
]Search in Google Scholar
[
[6] G. Grätzer and H. Lakser, Some preliminary results on the set of principal congruences of a finite lattice, Algebra Univ. 79 (2018), paper no. 21. https://doi.org/10.1007/s00012-018-0487-y10.1007/s00012-018-0487-y
]Search in Google Scholar
[
[7] G. Grätzer and H. Lakser, Minimal representations of a finite distributive lattice by principal congruences of a lattice, Acta Sci. Math. (Szeged) 85 (2019) 69–96. https://doi.org/10.14232/actasm-017-060-910.14232/actasm-017-060-9
]Search in Google Scholar
[
[8] G. Grätzer, H. Lakser and E.T. Schmidt, Congruence lattices of finite semimodular lattices, Canad. Math. Bull. 41 (1998) 290–297. https://doi.org/10.4153/cmb-1998-041-710.4153/CMB-1998-041-7
]Search in Google Scholar
[
[9] G. Grätzer and E.T. Schmidt, Standard ideals in lattices, Acta Math. Acad. Sci. Hungar. 12 (1961) 17–86.10.1007/BF02066675
]Search in Google Scholar
[
[10] G. Grätzer and E.T. Schmidt, On congruence lattices of lattices, Acta Math. Acad. Sci. Hungar. 13 (1962) 179–185.10.1007/BF02033636
]Search in Google Scholar