1. bookVolume 41 (2021): Issue 2 (November 2021)
Journal Details
License
Format
Journal
eISSN
2084-0373
First Published
16 Apr 2017
Publication timeframe
2 times per year
Languages
English
access type Open Access

On nd-K* (n, r)-Full Hypersubstitutions

Published Online: 06 Sep 2021
Volume & Issue: Volume 41 (2021) - Issue 2 (November 2021)
Page range: 213 - 227
Received: 25 May 2020
Accepted: 07 Jun 2020
Journal Details
License
Format
Journal
eISSN
2084-0373
First Published
16 Apr 2017
Publication timeframe
2 times per year
Languages
English
Abstract

Based on the notion of K* (n, r)-full terms defined by the authors, nd- K* (n, r)-full hypersubstitutions are defined. It turns out that the extension of an nd- K* (n, r)-full hypersubstitution is an endomorphism of the algebra of tree languages of nd- K* (n, r)-full terms.

Keywords

MSC 2010

[1] K. Denecke and N. Sarasit, Products of tree languages, Bulletin of the Section of Logic 40 (2011) 13–36. Search in Google Scholar

[2] K. Denecke and N. Sarasit, Semigroups of tree languages, Asian-Eur. J. Math. 1 (2008) 489–507. https://doi.org/10.1142/S179355710800040010.1142/S1793557108000400 Search in Google Scholar

[3] K. Denecke, P. Glubudom, and J. Koppitz, Power clones and non-deterministic hypersubstitutions, Asian-Eur. J. Math. 1 (2008) 177–188. https://doi.org/10.1142/S179355710800017510.1142/S1793557108000175 Search in Google Scholar

[4] S. Lekkoksung, Monoids of nd-full hypersubstitutions, Discuss. Math. Gen. Alg. Appl. 39 (2019) 165–179. https://doi.org/10.7151/dmgaa.131410.7151/dmgaa.1314 Search in Google Scholar

[5] K. Wattanatripop and T. Changphas, The clone of K* (n, r)-full terms, Discuss. Math. Gen. Alg. Appl. 39 (2019) 277–288. https://doi.org/10.7151/dmgaa.131910.7151/dmgaa.1319 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo