[
[1] J. Bosák, The Graphs of Semigroups, in: Theory of Graphs and Application (Academic Press, New York, 1964) 119–125.
]Search in Google Scholar
[
[2] B. Csákány and G. Pollák, The graph of subgroups of a finite group, Czechoslovak Math. J. 19 (1969) 241–247. https://doi.org/10.21136/CMJ.1969.10089110.21136/CMJ.1969.100891
]Search in Google Scholar
[
[3] I. Chakrabarty, S. Ghosh, T.K. Mukherjee and M.K. Sen, Intersection graphs of ideals of rings, Discrete Math. 309 (2009) 5381–5392. https://doi.org/10.1016/j.disc.2008.11.03410.1016/j.disc.2008.11.034
]Search in Google Scholar
[
[4] I. Chakrabarty, S. Ghosh and M.K. Sen, Undirected power graphs of semigroups, Semigroup Forum 78 (2009) 410–426. https://doi.org/10.1007/s00233-008-9132-y10.1007/s00233-008-9132-y
]Search in Google Scholar
[
[5] D.S. Dummit and R.M. Foote, Abstract Algebra, Third Edition (John Wiley and Sons, Inc., New York, 2004).
]Search in Google Scholar
[
[6] A.V. Kelarev and S.J. Quinn, A combinatorial property and power graphs of groups, Contributions to General Algebra 12 (2000) 229–235.
]Search in Google Scholar
[
[7] M. Sattanathan and R. Kala, An introduction to order prime graph, Int. J. Contemp. Math. Sciences 4 (2009) 467–474. https://doi.org/10.1111/j.1439-0507.1967.tb02798.x10.1111/j.1439-0507.1967.tb02798.x
]Search in Google Scholar
[
[8] D.B. West, Introduction to Graph Theory, Second Edition (Pearson India Education Services Pvt. Ltd., 2017).
]Search in Google Scholar
[
[9] B. Zelinka, Intersection graphs of finite Abelian groups, Czech. Math. J. 25 (1975) 171–174. https://doi.org/10.21136/CMJ.1975.10130710.21136/CMJ.1975.101307
]Search in Google Scholar