[
[1] K. Denecke and S.L. Wismath, Hyperidentities and Clones (Gordon and Breach Science Publishers, The Netherlands, 2000). https://doi.org/10.1201/978148228751610.1201/9781482287516
]Search in Google Scholar
[
[2] K. Denecke, D. Lau, R. Pöschel and D.Schweigert, Hyperidentities, Hyperequational Classes, and Clone Congruences, Contributions to General Algebra, Vol. 7 (Verlag Hölder-Pichler-Tempsky, Wien, 1991) 97–118.
]Search in Google Scholar
[
[3] J.M. Howie, Fundamentals of Semigroup Theory (Oxford University Press, New York, NY, USA, 1995). https://doi.org/10.1017/S001309150002388910.1017/S0013091500023889
]Search in Google Scholar
[
[4] S. Leeratanavalee and K. Denecke, Generalized Hypersubstitutions and Strongly Solid Varieties, General Algebra and Applications, Proc. of the “59 th Workshop on General Algebra, “15th Conference for Young Algebraists Potsdam 2000” (Shaker Verlag, 2000) 135–145.
]Search in Google Scholar
[
[5] W. Puninagool and S. Leeratanavalee, Green’s relations on HypG(2), Analele stiintifice ale Universitatii Ovidius Constanta, Seria Matematica 20 (2012) 249–264. https://doi.org/10.2478/v10309-012-0016-510.2478/v10309-012-0016-5
]Search in Google Scholar
[
[6] W. Puninagool and S. Leeratanavalee, The monoid of generalized hypersubstitutions of type τ = (n), Discuss. Math. Gen. Alg. Appl. 30 (2010) 173–191. https://doi.org/10.7151/dmgaa.116810.7151/dmgaa.1168
]Search in Google Scholar
[
[7] W. Wongpinit and S. Leeratanavalee, All maximal idempotent submonoids of HypG(n), Surveys in Math. and its Appl. 10 (2015) 41–48.
]Search in Google Scholar