[
[1] T. Changphas and B. Davvaz, Bi-hyperideals and Quasi-hyperideals in ordered semi-hypergroups, Italian J. Pure Appl. Math.-N 35 (2015) 493–508.
]Search in Google Scholar
[
[2] P. Corsini and V. Leoreanu-Fotea, Application of hyperstructure theory (Advanced in Mathematics, Kluwer Academic Publisher).200310.1007/978-1-4757-3714-1
]Search in Google Scholar
[
[3] B. Davvaz, Fuzzy hyperideals in semihypergroups, Italian J. Pure Appl. Math.-N 8 (2000) 67–74.
]Search in Google Scholar
[
[4] B. Davvaz, Weak algebraic hyperstructures as a model for interpretation of chemical reactions, Int. J. Math. Chemistry 7 (2016) 267–283. https://doi.org/10.22052/ijmc.2016.13975
]Search in Google Scholar
[
[5] B. Davvaz, A.D. Nezhad and M.M. Heidari, Inheritance examples of algebraic hyperstructures, Inform. Sci. 224 (2013) 180–187. https://doi.org/10.1016/j.ins.2012.10.02310.1016/j.ins.2012.10.023
]Search in Google Scholar
[
[6] M. Farooq, A. Khan, R. Khan and M. Izhar, Characterization of ordered semihypergroups in terms of uni-soft bi-hyperideals, Journal of Algebraic Hyperstructures and Logical Algebras (2020) Inpress.
]Search in Google Scholar
[
[7] F. Feng, M.I. Ali and M. Shabir, Soft relations applied to semigroups, Filomat 27 (2013) 1183–1196. https://doi.org/10.2298/FIL1307183F10.2298/FIL1307183F
]Search in Google Scholar
[
[8] Y.B. Jun, S.Z. Song and G. Muhiuddin, Concave soft sets, critical soft points, and union-soft ideals of ordered semigroups, The Scientific World Journal 2014 (1–11) Article ID 467968.10.1155/2014/467968421913525405223
]Search in Google Scholar
[
[9] Y.B. Jun, K.J. Lee and A. Khan, Soft ordered semigroups, Math. Logic Quarterly 56 (2010) 42–50. https://doi.org/10.1002/malq.20081003010.1002/malq.200810030
]Search in Google Scholar
[
[10] N. Kehayopulu, On Left Regular Ordered Semigroups, Math. Japon. 35 (1990) 1057–1060.
]Search in Google Scholar
[
[11] N. Kehayopulu and M. Tsingelis, Regular ordered semigroups in terms of fuzzy subsets, Inform. Sci. 176 (2006) 3675–3693. https://doi.org/10.1016/j.ins.2006.02.00410.1016/j.ins.2006.02.004
]Search in Google Scholar
[
[12] N. Kehayopulu, On Completely Regular Ordered Semigroups, Sci. Math. 1 (1998) 27–32.
]Search in Google Scholar
[
[13] A. Khan, R. Khan and Y.B. Jun, Uni-soft structure applied to ordered semigroups, Soft Comput. 21 (2017) 1021–1030. https://doi.org/10.1007/s00500-015-1837-810.1007/s00500-015-1837-8
]Search in Google Scholar
[
[14] A. Khan, Y.B. Jun, S.I.A. Shah and R. Khan, Applications of soft union sets in ordered semigroups via uni-soft quasi-ideals, J. Intell. Fuzzy Syst. 30 (2016) 97–107. https://doi.org/10.3233/IFS-15173410.3233/IFS-151734
]Search in Google Scholar
[
[15] A. Khan, M. Farooq and H. Khan, Uni-soft hyperideals of ordered semihypergroups, J. Intell. Fuzzy Sys. 35 (2018) 4557–4571. https://doi.org/10.3233/JIFS-16182110.3233/JIFS-161821
]Search in Google Scholar
[
[16] A. Khan, M. Farooq and B. Davvaz, Characterizations of ordered semihypergroups by the properties of their intersectional-soft generalized bi-hyperideals, Soft Comput. 22 (2018) 3001–3010. https://doi.org/10.1007/s00500-017-2550-610.1007/s00500-017-2550-6
]Search in Google Scholar
[
[17] A. Khan, M. Farooq and N. Yaqoob, Uni-soft structures applied to ordered -semihypergroups, Proc. of the Nat. Acad. of Sci., India Section A: Phys. Sci. 90 (2020) 457–465. https://doi.org/10.1007/s40010-019-00602-x10.1007/s40010-019-00602-x
]Search in Google Scholar
[
[18] F. Marty, Sur Une generalization de la notion de group, 8iem congress, Math. Scan-dinaves Stockholm (1934) 45–49.
]Search in Google Scholar
[
[19] D. Molodtsov, Soft set theory—first results, Comput. Math. Appl. 37 (1999) 19–31. https://doi.org/10.1016/S0898-1221(99)00056-510.1016/S0898-1221(99)00056-5
]Search in Google Scholar
[
[20] S. Naz and M. Shabir, On prime soft bi-hyperideals of semihypergroups, J. Intell. Fuzzy Sys. 26 (2014) 1539–1546. https://doi.org/10.3233/IFS-13083710.3233/IFS-130837
]Search in Google Scholar
[
[21] B.O. Onasanya, A Note on Hyperstructres and Some Applications, International J. Math. Combin. 4 (2017) 60–67.
]Search in Google Scholar
[
[22] B. Pibaljommee and B. Davvaz, Characterizations of (fuzzy) bi-hyperideals in ordered semihypergroups, J. Intell. Fuzzy Sys. 28 (2015) 2141–2148. https://doi.org/10.3233/IFS-14149410.3233/IFS-141494
]Search in Google Scholar
[
[23] B. Pibaljommee, K. Wannatong and B. Davvaz, An investigation on fuzzy hyper-ideals of ordered semihypergroups, Quasigroups and Related Systems 23 (2015) 297–308.
]Search in Google Scholar
[
[24] M. Shabir and A. Khan, Fuzzy Quasi-Ideals of Ordered Semigroups, Bull. Malays. Math. Sci. Soc 34 (2011) 87–102. https://doi.org/10.20454/ijas.2012.42410.20454/ijas.2012.424
]Search in Google Scholar
[
[25] J. Tang, A. Khan and Y.F. Luo, Characterization of semisimple ordered semihyper-groups in terms of fuzzy hyperideals, J. Intell. Fuzzy Sys. 30 (2016) 1735–1753. https://doi.org/10.3233/IFS-15188410.3233/IFS-151884
]Search in Google Scholar
[
[26] J. Zhan, N.Čağman and A.S. Sezer, Applications of soft union sets to hemirings via SU -h-ideals, J. Intell. Fuzzy Sys. 26 (2014) 1363-1370. https://doi.org/10.3233/IFS-13082210.3233/IFS-130822
]Search in Google Scholar