1. bookVolume 41 (2021): Issue 2 (November 2021)
Journal Details
License
Format
Journal
eISSN
2084-0373
First Published
16 Apr 2017
Publication timeframe
2 times per year
Languages
English
access type Open Access

On Hom-Leibniz and Hom-Lie-Yamaguti Superalgebras

Published Online: 06 Sep 2021
Volume & Issue: Volume 41 (2021) - Issue 2 (November 2021)
Page range: 249 - 264
Received: 19 May 2020
Accepted: 03 Aug 2020
Journal Details
License
Format
Journal
eISSN
2084-0373
First Published
16 Apr 2017
Publication timeframe
2 times per year
Languages
English
Abstract

In this paper some characterizations of Hom-Leibniz superalgebras are given and some of their basic properties are found. These properties can be seen as a generalization of corresponding well-known properties of Hom-Leibniz algebras. Considering the Hom-Akivis superalgebra associated to a given Hom-Leibniz superalgebra, it is observed that the Hom-super Akivis identity leads to an additional property of Hom-Leibniz superalgebras, which in turn gives a necessary and sufficient condition for Hom-super Lie admissibility of Hom-Leibniz superalgebras. We also show that every (left) Hom-Leibniz superalgebra has a natural super Hom-Lie-Yamaguti structure.

Keywords

MSC 2010

[1] K. Abdaoui, F. Ammar and A. Makhlouf, Hom-alternative, Hom-Malcev and Hom-Jordan superalgebras, Bull. Malays. Math. Sci. Soc. 40 (2017) 439–472. https://doi.org/10.1007/s40840-016-0323-510.1007/s40840-016-0323-5 Search in Google Scholar

[2] H. Albuquerque A. P. Santana Akivis superalgebras and speciality, Contemporary Math. 483 (2009) 13–22.10.1090/conm/483/09431 Search in Google Scholar

[3] F. Ammar and A. Makhlouf, Hom-Lie superalgebras and Hom-Lie admissible super-algebras, J. Algebra 324 (2010) 1513–1528. https://doi.org/10.1016/j.jalgebra.2010.06.01410.1016/j.jalgebra.2010.06.014 Search in Google Scholar

[4] H. Ataguema, A. Makhlouf and S.D. Silvestrov, Generalization of n-ary Nambu algebras and beyond, J. Math. Phys. 50 (2009) 083501. https://doi.org/10.1063/1.316780110.1063/1.3167801 Search in Google Scholar

[5] D. Gaparayi and A.N. Issa, Hom-Akivis superalgebras, J. Alg. Comput. Appl. 6 (2017) 36–51. Search in Google Scholar

[6] D. Gaparayi and A.N. Issa, A Twisted Generalization of Lie-Yamaguti Algebras, Int. J. Algebra 7 (2012) 339–352. Search in Google Scholar

[7] D. Gaparayi and A.N. Issa, Hom-Lie-Yamaguti structures on Hom-Leibniz algebras, Extracta Math. 28 (2013) 1–12. Search in Google Scholar

[8] D. Gaparayi, S. Attan and A.N. Issa, Hom-Lie-Yamaguti superalgebras, Korean J. Math. 27 (2019) 175–192. https://doi.org/10.11568/kjm.2019.27.1.175 Search in Google Scholar

[9] Y. Fregier and A. Gohr, Unital algebras of Hom-associative type and surjective or injective twistings, J. Gen. Lie Theo. and Appl. 3 (2009) 285–295.10.4303/jglta/S090402 Search in Google Scholar

[10] J.T Hartwig, D. Larsson and S.D. Silvestrov, Deformations of Lie algebras using σ-derivations, J. Algebra 295 (2006) 314–361. https://doi.org/10.1016/j.jalgebra.2005.07.03610.1016/j.jalgebra.2005.07.036 Search in Google Scholar

[11] A.N. Issa, Some characterizations of Hom-Leibniz algebras, International Int. Elect. J. Alg. 14 (2013) 1–9. Search in Google Scholar

[12] A.N. Issa, Hom-Akivis algebras, Comment. Math. Univ. Carolin. 52 (2011). http://dml.cz/dmlcz/142800. Search in Google Scholar

[13] Q. Jin and X. Li, Hom-Lie algebra structures on semi-simple Lie algebras, J. Algebra 319 (2008) 1398–1408. https://doi.org/10.1016/j.jalgebra.2007.12.00510.1016/j.jalgebra.2007.12.005 Search in Google Scholar

[14] M.K. Kinyon and A. Weinstein, Leibniz algebras, Courant algebroids and multiplications on reductive homogeneous spaces, Amer. J. Math. 123 (2001) 525–550. https://doi.org/10.1353/ajm.2001.001710.1353/ajm.2001.0017 Search in Google Scholar

[15] J-L. Loday. Une version non commutative des algèbres de Lie: les algèbres de Leibniz, Enseign. Math. 39 (1993) 269–293. Search in Google Scholar

[16] A. Makhlouf, Hom-alternative algebras and Hom-Jordan algebras, Int. Elect. J. Alg. 8 (2010) 177–190. Search in Google Scholar

[17] A. Makhlouf, Paradigm of nonassociative Hom-algebras and Hom-superalgebras, in: Proceedings of Jordan structures in algebra and Analysis Meeting, 143–177, Editional Circulo Rojo (Almeria, 2010). Search in Google Scholar

[18] Qi Nie and Zhen Li, The Classification of 4-dimensional Leibniz Superalgebras, Math. Aeterna 7 2017 375–380. Search in Google Scholar

[19] I.P. Shestakov, Prime Mal’tsev superalgebras, Mat. Sb 182 (1991) 1357–1366 Search in Google Scholar

[20] B. Sun, The construction of Hom-Novikov superalgebras, Math. Aeterna 6 (2016) 605–609. Search in Google Scholar

[21] C. Wang, Q. Zhang and Z. Wei, Hom-Leibniz superalgebras and Hom-Leibniz Poisson superalgebras, Hacet. J. Math. Stat. 44 (2015) 1163–1179. Search in Google Scholar

[22] D. Yau, Hom-Malcev, Hom-alternative, and Hom-Jardan algebras, Int. Elect. J. Alg. 11 (2012) 177–217. Search in Google Scholar

[23] D. Yau, Hom-algebras and Homology, J. Lie Theory 19 (2009) 409–421. Search in Google Scholar

[24] D. Yau, Hom-Novikov algebras, J. Phys. A 44 (2011) 085202.10.1088/1751-8113/44/8/085202 Search in Google Scholar

[25] D. Yau, On n-ary Hom-Nambu and Hom-Nambu-Lie algebras, J. Geom. Phys. 62 (2012) 506–522. https://doi.org/10.1016/j.geomphys.2011.11.00610.1016/j.geomphys.2011.11.006 Search in Google Scholar

[26] J.X. Yuan, L.P. Sun and W.D. Liu, Multiplicative Hom-Lie superalgebra structures on infinite dimensional simple Lie superalgebras of vector fields, J. Geom. Phys. 84 (2014) 1–7. https://doi.org/10.1016/j.geomphys.2014.06.00110.1016/j.geomphys.2014.06.001 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo