1. bookVolume 66 (2017): Issue 2 (June 2017)
Journal Details
First Published
04 Mar 1952
Publication timeframe
4 times per year
Open Access

Biochar-Rhizosphere Interactions – a Review

Published Online: 28 Jun 2017
Volume & Issue: Volume 66 (2017) - Issue 2 (June 2017)
Page range: 151 - 161
Received: 25 Apr 2016
Accepted: 02 Dec 2016
Journal Details
First Published
04 Mar 1952
Publication timeframe
4 times per year

Biochar is a solid material of biological origin obtained from biomass carbonization, designed as a mean to reduce greenhouse gases emission and carbon sequestration in soils for a long time. Biochar has a wide spectrum of practical utilization and is applied as a promising soil improver or fertilizer in agriculture, or as a medium for soil or water remediation. Preparations of biochar increase plant growth and yielding when applied into soil and also improve plant growth conditions, mainly bio, physical and chemical properties of soil. Its physical and chemical properties have an influence on bacteria, fungi and invertebrates, both in field and laboratory conditions. Such effects on rhizosphere organisms are positive or negative depending on biochar raw material origin, charring conditions, frequency of applications, applications method and doses, but long term effects are generally positive and are associated mainly with increased soil biota activity. However, a risk assessment of biochar applications is necessary to protect food production and the soil environment. This should be accomplished by biochar production and characterization, land use implementation, economic analysis, including life cycle assessment, and environmental impact assessment.


Ajayi A.E., P. Oguntunde, A. Joseph, and M.dS. Dias Júnior. 2009. Numerical analysis of the impact of charcoal production on soil hydrological behaviour, runoff response and erosion susceptibility. Rev. Bras. Cienc. Solo. 33: 137–146. Search in Google Scholar

Akhtar S.S., G. Li, M.N. Andersen and F. Liu. 2014. Biochar enhances yield and quality of tomato under reduced irrigation. Agric. Water Manag. 138: 37–44.10.1016/j.agwat.2014.02.016 Search in Google Scholar

Akhter A., K. Hage-Ahmed, G. Soja and S. Steinkellner. 2015. Compost and biochar alter mycorrhization, tomato root exudation, and development of Fusarium oxysporum f. sp. lycopersici. Frontiers in Plant Science 6(529): 1–13.10.3389/fpls.2015.00529449803826217373 Search in Google Scholar

Akiyama K., K.-I. Matsuzaki and H. Hayashi. 2005. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435: 824–827.10.1038/nature0360815944706 Search in Google Scholar

Ameloot N., S. de Neve, K. Jegajeevagan, G. Yildiz, D. Buchan, Y.N. Funkuin, W. Prins, L. Bouckaert and S. Sleutel. 2013. Shortterm CO2 N2O emissions and microbial properties of biochar amended sandy loam soils. Soil Biology and Biochemistry. 57: 401–410.10.1016/j.soilbio.2012.10.025 Search in Google Scholar

Ameloot N., S. Sleutel, K.C. Das, J. Kanagaratnam and S. de Neve. 2015. Biochar amendment to soils with contrasting organic matter level: effects on N mineralization and biological soil properties. GCB Bioenergy 7: 135–144.10.1111/gcbb.12119 Search in Google Scholar

Anderson C.R., L.M. Condron, T.J. Clough, M. Fiers, A. Stewart, R.A. Hill and R.R. Sherlock. 2011. Biochar induced soil microbial community change: Implications for biogeochemical cycling of carbon, nitrogen and phosphorus. Pedobiologia 54: 309–320.10.1016/j.pedobi.2011.07.005 Search in Google Scholar

Atkinson C., J. Fitzgerald and N. Hipps. 2010. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil. 337: 1–18.10.1007/s11104-010-0464-5 Search in Google Scholar

Atucha A. and G. Litus. 2015. Effect of biochar amendments on peach replant disease. HortSci. 50: 863–868.10.21273/HORTSCI.50.6.863 Search in Google Scholar

Bailey V.L., S.J. Fansler, J.L. Smith and H. Bolton Jr. 2011. Reconciling apparent variability in effects of biochar amendment on soil enzyme activities by assay optimization. Soil Biol. Biochem. 43: 296–301.10.1016/j.soilbio.2010.10.014 Search in Google Scholar

Beesley L., E. Moreno-Jiménez and J.L. Gomez-Eyles. 2010. Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environ. Pollut. 158: 2282–2287. Search in Google Scholar

Birk J., C. Steiner, W. Teixiera, W. Zech and B. Glaser. 2009. Microbial response to charcoal amendments and fertilization of a highly weathered tropical soil. pp. 309–324. In: Woods W., W. Teixeira, J. Lehmann, C. Steiner, A. Winkler Prins and L. Rebellato (eds). Amazonian dark earths: Wim Sombroek’s vision. Springer, Netherlands.10.1007/978-1-4020-9031-8_16 Search in Google Scholar

Blackwell P., E. Krull, G. Butler, A. Herbert and Z. Solaiman. 2010. Effect of banded biochar on dryland wheat production and fertiliser use in south-western Australia: an agronomic and economic perspective. Aust. J. Soil. Res. 48: 531–545.10.1071/SR10014 Search in Google Scholar

Bridgwater A. and G.V. Peacocke. 2000. Fast pyrolysis processes for biomass. Renew. Sust. Energ. Rev. 4: 1–73.10.1016/S1364-0321(99)00007-6 Search in Google Scholar

Cao X., L. Ma, B. Gao and W. Harris. 2009. Dairy-Manure derived biochar effectively sorbs lead and atrazine. Environ. Sci. Technol. 43: 3285–3291.10.1021/es803092k19534148 Search in Google Scholar

Carter S., S. Shackley, S. Sohi, T.B. Suy and S. Haefele. 2013. The impact of biochar application on soil properties and plant growth of pot grown lettuce (Lactuca sativa) and cabbage (Brassica chinensis). Agronomy. 3: 404–418.10.3390/agronomy3020404 Search in Google Scholar

Chan K.Y., L. van Zwieten, I. Meszaros, A. Downie and S. Joseph. 2007. Agronomic values of greenwaste biochar as a soil amendment. Aust. J. Soil Res. 45: 629–634.10.1071/SR07109 Search in Google Scholar

Chen J., X. Liu, J. Zheng, B. Zhang, H. Lu, Z. Chi, G. Pan, L. Li, J. Zheng, J. Zhang and others. 2013. Biochar soil amendment increased bacterial but decreased fungal gene abundance with shifts in community structure in a slightly acid rice paddy from Southwest China. Appl. Soil Ecol. 71: 33–44.10.1016/j.apsoil.2013.05.003 Search in Google Scholar

Cheng C.-H., J. Lehmann, J.E. Thies, S.D. Burton and M.H. Engelhard. 2006. Oxidation of black carbon by biotic and abiotic processes. Org. Geochem. 37: 1477–1488.10.1016/j.orggeochem.2006.06.022 Search in Google Scholar

Cheng C.-H., J. Lehmann and M.H. Engelhard. 2008a. Natural oxidation of black carbon in soils: Changes in molecular form and surface charge along a climosequence. Geochim Cosmochim Ac. 72: 1598–1610.10.1016/j.gca.2008.01.010 Search in Google Scholar

Cheng C.-H., J. Lehmann, J.E. Thies and S.D. Burton. 2008b. Stability of black carbon in soils across a climatic gradient. J. Geophys. Res-Biogeo. 113: G02027(1–10).10.1029/2007JG000642 Search in Google Scholar

Chintala R., T.E. Schumacher, S. Kumar, D.D. Malo, J.A. Rice, B. Bleakley, G. Chilom, D.E. Clay, J.L. Julson, S.K. Papiernik and others. 2014. Molecular characterization of biochars and their influence on microbiological properties of soil. J. Hazard Mater. 279:244–256.10.1016/j.jhazmat.2014.06.07425064262 Search in Google Scholar

Cui H.-J., M. Wang, M.-L. Fu and E. Ci. 2011. Enhancing phosphorus availability in phosphorus-fertilized zones by reducing phosphate adsorbed on ferrihydrite using rice straw-derived biochar. J. Soil Sediment. 11: 1135–1141.10.1007/s11368-011-0405-9 Search in Google Scholar

DeLuca T.H., M.D. MacKenzie, M.J. Gundale and W.E. Holben. 2006. Wildfire-produced charcoal directly influences nitrogen cycling in ponderosa pine forests. Soil Sci. Soc. Am. J. 70: 448–453.10.2136/sssaj2005.0096 Search in Google Scholar

DeLuca T.H., M.D. MacKenzie and M.J. Gundale. 2009. Biochar effects on soil nutrient transformations, pp. 251–270. In: Lehmann J. and S. Joseph (eds). Biochar for environmental management: Science and Technology. Earthscan, London. Search in Google Scholar

Denyes M.J., V.S. Langlois, A. Rutter and B.A. Zeeb. 2012. The use of biochar to reduce soil PCB bioavailability to Cucurbita pepo and Eisenia fetida. Sci. Total Environ. 437: 76–82.10.1016/j.scitotenv.2012.07.08122922132 Search in Google Scholar

Dong D., M. Yang, C. Wang, H. Wang, Y. Li, J. Luo and W. Wu. 2013. Responses of methane emissions and rice yield to applications of biochar and straw in a paddy field. J. Soils Sediments. 13: 1450–1460.10.1007/s11368-013-0732-0 Search in Google Scholar

Downie A., L. van Zwieten, K.Y. Chan, W. Doughtery and S. Joseph. 2007. Nutrient retention characteristics of agrichar and the agronomic implications. International Agrichar Initiative Conference, April 2007, Terrigal, NSW, Australia. Search in Google Scholar

Dünisch O., V. Lima, G. Seehann, J. Donath, V. Montóia and T. Schwarz. 2007. Retention properties of wood residues and their potential for soil amelioration. Wood Sci. Technol. 41: 169–189.10.1007/s00226-006-0098-1 Search in Google Scholar

Edelstein D.M. and D.J. Tonjes. 2011. Modeling an improvement in phosphorus utilization in tropical agriculture. J. Sustain. Agr. 36: 18–35.10.1080/10440046.2011.627993 Search in Google Scholar

Elad Y., D.R. David, Y.M. Harel, M. Borenshtein, H.B. Kalifa, A. Silber and E.R. Graber. 2010. Induction of systemic resistance in plants by biochar, a soil-applied carbon sequestering agent. Phytopathology 100: 913–921. Search in Google Scholar

Elmer W.H. and J.J. Pignatello. 2011. Effect of biochar amendments on mycorrhizal associations and Fusarium crown and root rot of Asparagus in replant soils. Plant Dis. 95: 960–966.10.1094/PDIS-10-10-074130732119 Search in Google Scholar

Enders A., K. Hanley, T. Whitman, S. Joseph and J. Lehmann. 2012. Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresource Technol. 114: 644–653.10.1016/j.biortech.2012.03.02222483559 Search in Google Scholar

Eyles A., S.A. Bound, G. Oliver, R. Corkrey, M. Hardie, S. Green and D.C. Close. 2015. Impact of biochar amendment on the growth, physiology and fruit of a young commercial apple orchard. Trees 29: 1817–1826. Search in Google Scholar

Ezawa T., K. Yamamoto and S. Yoshida. 2002. Enhancement of the effectiveness of indigenous arbuscular mycorrhizal fungi by inorganic soil amendments. Soil Sci. Plant Nutr. 48: 897–900.10.1080/00380768.2002.10408718 Search in Google Scholar

Farrell M., T.K. Kuhn, L.M. Macdonald, T.M. Maddern, D.V. Murphy, P.A. Hall, B.P. Singh, K. Baumann, E.S. Krull and J.A. Baldock. 2013. Microbial utilisation of biochar-derived carbon. Sci. Total Environ. 465: 288–297.10.1016/j.scitotenv.2013.03.09023623696 Search in Google Scholar

Fox A., J. Gahan, I. Ikoyi, W. Kwapinski, O. O’Sullivan, P.D. Cotter and A. Schmalenberger. 2016. Miscanthus biochar promotes growth of spring barley and shifts bacterial community structures including phosphorus and sulfur mobilizing bacteria. Pedobiologia 59: 195–202.10.1016/j.pedobi.2016.07.003 Search in Google Scholar

Free H., C. McGill, J. Rowarth and M. Hedley. 2010. The effect of biochars on maize (Zea mays) germination. New Zeal. J. Agr. Res. 53: 1–4.10.1080/00288231003606039 Search in Google Scholar

George C., J. Kohler and M.C. Rillig. 2016. Biochars reduce infection rates of the root-lesion nematode Pratylenchus penetrans and associated biomass loss in carrot. Soil Biol. Biochem. 95: 11–18.10.1016/j.soilbio.2015.12.003 Search in Google Scholar

Gilroy S. and D.L. Jones. 2000. Through form to function: root hair development and nutrient uptake. Trends Plant Sci. 5: 56–60.10.1016/S1360-1385(99)01551-4 Search in Google Scholar

Glaser B., J. Lehmann and W. Zech. 2002. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal – a review. Biol. Fert. Soils. 35: 219–230.10.1007/s00374-002-0466-4 Search in Google Scholar

Glaser B., K. Wiedner, S. Seelig, H.-P. Schmidt and H. Gerber. 2015. Biochar organic fertilizers from natural resources as substitute for mineral fertilizers. Agrono. Sustain Dev. 35: 667–678.10.1007/s13593-014-0251-4 Search in Google Scholar

Głodowska M., B. Husk, T. Schwinghamer and D. Smith. 2016. Biochar is a growth-promoting alternative to peat moss for the inoculation of corn with a pseudomonad. Agrono. Sustain Dev. 36: 1–10.10.1007/s13593-016-0356-z Search in Google Scholar

Gomez J.D., K. Denef, C.E. Stewart, J. Zheng and M.F. Cotrufo. 2014. Biochar addition rate influences soil microbial abundance and activity in temperate soils. Eur. J. Soil Sci. 65: 28–39.10.1111/ejss.12097 Search in Google Scholar

Gomez-Eyles J.L., T. Sizmur, C.D. Collins and M.E. Hodson. 2011. Effects of biochar and the earthworm Eisenia fetida on the bioavailability of polycyclic aromatic hydrocarbons and potentially toxic elements. Environ. Pollut. 159: 616–622.10.1016/j.envpol.2010.09.03721035930 Search in Google Scholar

González M.E., M. Cea, J. Medina, A. González, M.C. Diez, P. Cartes, C. Monreal and R. Navia. 2015. Evaluation of biodegradable polymers as encapsulating agents for the development of a urea controlled-release fertilizer using biochar as support material. Sci. Total Environ. 505: 446–453.10.1016/j.scitotenv.2014.10.01425461046 Search in Google Scholar

Graber E., Y. Meller Harel, M. Kolton, E. Cytryn, A. Silber, D. Rav David, L. Tsechansky, M. Borenshtein and Y. Elad. 2010. Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant Soil. 337: 481–496.10.1007/s11104-010-0544-6 Search in Google Scholar

Gryndler M., J. Larsen, H. Hršelová, V. Řezáčová, H. Gryndlerová and J. Kubát. 2006. Organic and mineral fertilization, respectively, increase and decrease the development of external mycelium of arbuscular mycorrhizal fungi in a long-term field experiment. Mycorrhiza. 16: 159–166. Search in Google Scholar

Güereña D.T., J. Lehmann, J.E. Thies, A. Enders, N. Karanja and H. Neufeldt. 2015. Partitioning the contributions of biochar properties to enhanced biological nitrogen fixation in common bean (Phaseolus vulgaris). Biol. Fert. Soils 51: 479–491.10.1007/s00374-014-0990-z Search in Google Scholar

Gundale M.J. and T.H. DeLuca. 2006. Temperature and source material influence ecological attributes of Ponderosa pine and Douglas-fir charcoal. Forest Ecol. Manag. 231: 86–93.10.1016/j.foreco.2006.05.004 Search in Google Scholar

Hale S.E., J. Jensen, L. Jakob, P. Oleszczuk, T. Hartnik, T. Henriksen, G. Okkenhaug, V. Martinsen and G. Cornelissen. 2013. Short-term effect of the soil amendments activated carbon, biochar, and ferric oxyhydroxide on bacteria and invertebrates. Environ. Sci. Technol. 47: 8674–8683. Search in Google Scholar

Hale L., M. Luth and D. Crowley. 2015. Biochar characteristics relate to its utility as an alternative soil inoculum carrier to peat and vermiculite. Soil Biol. Biochem. 81: 228–235.10.1016/j.soilbio.2014.11.023 Search in Google Scholar

Hammer E.C., Z. Balogh-Brunstad, I. Jakobsen, P.A. Olsson, S.L.S. Stipp and M.C. Rillig. 2014. A mycorrhizal fungus grows on biochar and captures phosphorus from its surfaces. Soil Biol. Biochem. 77: 252–260.10.1016/j.soilbio.2014.06.012 Search in Google Scholar

Hiltner L. 1904. New experiences and problems in the field of soil bacteriology with special consideration of the foundations and fallow (in German). Arb DLG Berlin. 98: 59–78. Search in Google Scholar

Hosseini Bai S., C.-Y. Xu, Z. Xu, T. Blumfield, H. Zhao, H. Wallace, F. Reverchon and L. van Zwieten. 2015. Soil and foliar nutrient and nitrogen isotope composition (δ15N) at 5 years after poultry litter and green waste biochar amendment in a macadamia orchard. Environ. Sci. Pollut. Res. 22: 3803–3809.10.1007/s11356-014-3649-225266060 Search in Google Scholar

Houben D., P. Sonnet and J.-T. Cornelis. 2014. Biochar from Miscanthus: a potential silicon fertilizer. Plant Soil. 374: 871–882.10.1007/s11104-013-1885-8 Search in Google Scholar

Ishii T. and K. Kadoya. 1994. Effects of charcoal as a soil conditioner on citrus growth and vesicular-arbuscular mycorrhizal development. J. Jpn. Soc. Hortic. Sci. 63: 529–535.10.2503/jjshs.63.529 Search in Google Scholar

Jaafar N.M. 2014. Biochar as a habitat for arbuscular mycorrhizal fungi, pp. 297–311. In: Solaiman M.Z., K.L. Abbott and A. Varma (eds.), Mycorrhizal fungi: use in sustainable agriculture and land restoration. Springer Berlin Heidelberg, Berlin, Heidelberg.10.1007/978-3-662-45370-4_19 Search in Google Scholar

Jeffery S., F.G.A. Verheijen, M. van der Velde and A.C. Bastos. 2011. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agr. Ecosyst. Environ. 144: 175–187.10.1016/j.agee.2011.08.015 Search in Google Scholar

Jha P., A.K. Biswas, B.L. Lakaria and A.S. Rao. 2010. Biochar in agriculture-prospects and related implications. Curr. Sci. India 99: 1218–1225. Search in Google Scholar

Jiang J., R. Xu, T. Jiang and Z. Li. 2012. Immobilization of Cu(II), Pb(II) and Cd(II) by the addition of rice straw derived biochar to a simulated polluted Ultisol. J. Hazard Mater. 229–230: 145–150. Search in Google Scholar

Jones D.L., J. Rousk, G. Edwards-Jones, T.H. DeLuca and D.V. Murphy. 2012. Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil Biol. Biochem. 45: 113–124.10.1016/j.soilbio.2011.10.012 Search in Google Scholar

Joseph S.D., M. Camps-Arbestain, Y. Lin, P. Munroe, C.H. Chia, J. Hook, L. van Zwieten, S. Kimber, A. Cowie, B.P. Singh and others. 2010. An investigation into the reactions of biochar in soil. Aust. J. Soil Res. 48: 501–515.10.1071/SR10009 Search in Google Scholar

Kim S.-K., D.-H. Park, S.H. Song, Y.-J.Wee and G.-T. Jeong. 2013. Effect of fermentation inhibitors in the presence and absence of activated charcoal on the growth of Saccharomyces cerevisiae. Bioproc. Biosyst. Eng. 36: 659–666.10.1007/s00449-013-0888-423358811 Search in Google Scholar

Kobayashi D.Y. and J.A. Crouch. 2009. Bacterial/fungal interactions: from pathogens to mutualistic endosymbionts. Ann. Rev. Phytopathol. 47: 63–82.10.1146/annurev-phyto-080508-08172919400650 Search in Google Scholar

Kolb S.E., K.J. Fermanich and M.E. Dornbush. 2009. Effect of charcoal quantity on microbial biomass and activity in temperate soils. Soil Sci. Soc. Am. J. 73: 1173–1181.10.2136/sssaj2008.0232 Search in Google Scholar

Kothari S.K., H. Marschner and E. George. 1990. Effect of VA mycorrhizal fungi and rhizosphere microorganisms on root and shoot morphology, growth and water relations in maize. New Phytol. 116: 303–311. Search in Google Scholar

Laird D., P. Fleming, B. Wang, R. Horton and D. Karlen. 2010. Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma 158: 436–442.10.1016/j.geoderma.2010.05.012 Search in Google Scholar

Lee J.W., B. Hawkins, X. Li and D.M. Day. 2013. Biochar fertilizer for soil amendment and carbon sequestration, pp. 57–68. In: Lee W.J. (eds). Advanced Biofuels and Bioproducts. Springer New York, New York, NY.10.1007/978-1-4614-3348-4_6 Search in Google Scholar

Lehmann J., J. Pereira da Silva Jr., C. Steiner, T. Nehls, W. Zech and B. Glaser. 2003. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant Soil. 249: 343–357. Search in Google Scholar

Lehmann J., M.C. Rillig, J. Thies, C.A. Masiello, W.C. Hockaday and D. Crowley. 2011 Biochar effects on soil biota – a review. Soil Biol. Biochem. 43:1812–1836.10.1016/j.soilbio.2011.04.022 Search in Google Scholar

Li D., W.C. Hockaday, C.A. Masiello and P.J.J. Alvarez. 2011. Earthworm avoidance of biochar can be mitigated by wetting. Soil Biol. Biochem. 43: 1732–1737.10.1016/j.soilbio.2011.04.019 Search in Google Scholar

Liang B., J. Lehmann, D. Solomon, J. Kinyangi, J. Grossman, B. O’Neill, J.O. Skjemstad, J. Thies, F.J. Luizão, J. Petersen and others. 2006. Black carbon increases cation exchange capacity in soils. Soil Sci. Soc. Am. J. 70: 1719–1730.10.2136/sssaj2005.0383 Search in Google Scholar

Liesch A., S. Weyers, J. Gaskin and K. Das. 2010. Impact of two different biochars on earthworm growth and survival. Ann. Environ. Sci. 4: 1–9. Search in Google Scholar

Malińska K., M. Zabochnicka-Świątek, R. Cáceres and O. Marfà. 2016. The effect of precomposted sewage sludge mixture amended with biochar on the growth and reproduction of Eisenia fetida during laboratory vermicomposting. Ecol. Eng. 90: 35–41.10.1016/j.ecoleng.2016.01.042 Search in Google Scholar

Marks E.N., J. Alcañiz and X. Domene. 2014a. Unintended effects of biochars on short-term plant growth in a calcareous soil. Plant Soil. 385: 87–105.10.1007/s11104-014-2198-2 Search in Google Scholar

Marks E.A.N., S. Mattana, J.M. Alcañiz and X. Domene. 2014b. Biochars provoke diverse soil mesofauna reproductive responses in laboratory bioassays. Eur. J. Soil Biol. 60: 104–111.10.1016/j.ejsobi.2013.12.002 Search in Google Scholar

Marschner H. 1995. Mineral nutrition of higher plants, 2nd ed. Academic Press, London. Search in Google Scholar

Marschner P. 2012. Rhizosphere biology, pp. 369–388. In: Marschner P. (ed). Marschner’s mineral nutrition of higher plants, 3rd ed. Academic Press, San Diego.10.1016/B978-0-12-384905-2.00015-7 Search in Google Scholar

Martin P., A. Glatzle, W. Kolb, H. Omay and W. Schmidt. 1989. N2-fixing bacteria in the rhizosphere: quantification and hormonal effects on root development. Z Pflanzenernähr Bodenkd. 152: 237–245.10.1002/jpln.19891520216 Search in Google Scholar

Masiello C.A., Y. Chen, X. Gao, S. Liu, H.-Y. Cheng, M.R. Bennett, J.A. Rudgers, D.S. Wagner, K. Zygourakis and J.J. Silberg. 2013. Biochar and microbial signaling: production conditions determine effects on microbial communication. Environ. Sci. Technol. 47: 11496–11503.10.1021/es401458s389715924066613 Search in Google Scholar

Matsubara Y., N. Hasegawa and H. Fukui. 2002. Incidence of Fusarium root rot in Asparagus seedlings infected with arbuscular mycorrhizal fungus as affected by several soil amendments. J. Jpn. Soc. Hortic Sci. 71: 370–374.10.2503/jjshs.71.370 Search in Google Scholar

McCormack S.A., N. Ostle, R.D. Bardgett, D.W. Hopkins and A.J. Vanbergen. 2013. Biochar in bioenergy cropping systems: impacts on soil faunal communities and linked ecosystem processes. GCB Bioenergy. 5: 81–95.10.1111/gcbb.12046 Search in Google Scholar

Mehari Z.H., Y. Elad, D. Rav-David, E.R. Graber and Y. Meller Harel. 2015. Induced systemic resistance in tomato (Solanum lycopersicum) against Botrytis cinerea by biochar amendment involves jasmonic acid signaling. Plant Soil 395: 31–44.10.1007/s11104-015-2445-1 Search in Google Scholar

Meller Harel Y., Y. Elad, D. Rav-David, M. Borenstein, R. Shulchani, B. Lew and E. Graber. 2012. Biochar mediates systemic response of strawberry to foliar fungal pathogens. Plant Soil 357: 245–257.10.1007/s11104-012-1129-3 Search in Google Scholar

Mia S., J.W. van Groenigen, T.F.J. van de Voorde, N.J. Oram, T.M. Bezemer, L. Mommer and S. Jeffery. 2014. Biochar application rate affects biological nitrogen fixation in red clover conditional on potassium availability. Agr. Ecosyst. Envir. 191: 83–91.10.1016/j.agee.2014.03.011 Search in Google Scholar

Mitchell S.M., M. Subbiah, J.L. Ullman, C. Frear and D.R. Call. 2015. Evaluation of 27 different biochars for potential sequestration of antibiotic residues in food animal production environments. J. Environ. Chem. Eng. 3: 162–169.10.1016/j.jece.2014.11.012 Search in Google Scholar

Neuman G. and V. Römheld. 2012. Rhizosphere chemistry in relation to plant nutrition, pp. 347–368. In: Marschner P. (ed). Marschner’s mineral nutrition of higher plants, 3rd ed. Academic Press, San Diego.10.1016/B978-0-12-384905-2.00014-5 Search in Google Scholar

Ni J., J.J. Pignatello and B. Xing. 2011. Adsorption of aromatic carboxylate ions to black carbon (biochar) is accompanied by proton exchange with water. Environ. Sci. Technol. 45: 9240–9248.10.1021/es201859j21999243 Search in Google Scholar

Noguera D., M. Rondón, K.-R. Laossi, V. Hoyos, P. Lavelle, M.H. Cruz de Carvalho and S. Barot. 2010. Contrasted effect of biochar and earthworms on rice growth and resource allocation in different soils. Soil Biol. Biochem. 42: 1017–1027.10.1016/j.soilbio.2010.03.001 Search in Google Scholar

Ojeda G., S. Mattana, A. Àvila, J.M. Alcañiz, M. Volkmann and J. Bachmann. 2015. Are soil-water functions affected by biochar application? Geoderma. 249–250: 1–11.10.1016/j.geoderma.2015.02.014 Search in Google Scholar

Parvage M., B. Ulén, J. Eriksson, J. Strock and H. Kirchmann. 2013. Phosphorus availability in soils amended with wheat residue char. Biol. Fert. Soils. 49:245–250.10.1007/s00374-012-0746-6 Search in Google Scholar

Pietikäinen J., O. Kiikkilä and H. Fritze. 2000. Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus. Oikos. 89: 231–242.10.1034/j.1600-0706.2000.890203.x Search in Google Scholar

Piscitelli L., A. Shaaban, D. Mondelli, G.N. Mezzapesa, T.M. Miano and S. Dumontet. 2015. Use of olive mill pomace biochar as a support for soil microbial communities in an Italian sandy soil. Soil Horizons. 56: 1–7.10.2136/sh15-02-0006 Search in Google Scholar

Postma J., E.H. Nijhuis and E. Someus. 2010. Selection of phosphorus solubilizing bacteria with biocontrol potential for growth in phosphorus rich animal bone charcoal. Appl. Soil Ecol. 46: 464–469.10.1016/j.apsoil.2010.08.016 Search in Google Scholar

Prendergast-Miller M.T., M. Duvall and S.P. Sohi. 2014. Biocharroot interactions are mediated by biochar nutrient content and impacts on soil nutrient availability. Eur. J. Soil Sci. 65: 173–185.10.1111/ejss.12079 Search in Google Scholar

Rillig M.C., M. Wagner, M. Salem, P.M. Antunes, C. George, H.-G. Ramke, M.-M. Titirici and M. Antonietti. 2010. Material derived from hydrothermal carbonization: effects on plant growth and arbuscular mycorrhiza. Appl. Soil Ecol. 45: 238–242.10.1016/j.apsoil.2010.04.011 Search in Google Scholar

Rondon M.A., D. Molina, M. Hurtado, J. Ramirez, J. Lehmann, J. Major and E. Amezquita. 2006. Enhancing the productivity of crops and grasses while reducing greenhouse gas emissions through bio-char amendments to unfertile tropical soils, pp. 9–15. In: Eightteenth World Congress of Soil Science, Philadelphia, Pennsylvania, USA. Search in Google Scholar

Rutigliano F.A., M. Romano, R. Marzaioli, I. Baglivo, S. Baronti, F. Miglietta and S. Castaldi. 2014. Effect of biochar addition on soil microbial community in a wheat crop. Eur. J. Soil Biol. 60: 9–15.10.1016/j.ejsobi.2013.10.007 Search in Google Scholar

Saranya K., P.S. Krishnan, K. Kumutha and J. French. 2011. Potential for biochar as an alternate carrier to lignite for the preparation of biofertilizers in India. Int. J. Agric. Environ. Biotech. 4: 167–172. Search in Google Scholar

Schnitzer M.I., C.M. Monreal and G. Jandl. 2007. The conversion of chicken manure to bio-oil by fast pyrolysis. III. Analyses of chicken manure, bio-oils and char by Py-FIMS and Py-FDMS. J. Environ. Sci. Heal B. 43: 81–95. Search in Google Scholar

Siebers N., F. Godlinski and P. Leinweber. 2014. Bone char as phosphorus fertilizer involved in cadmium immobilization in lettuce, wheat, and potato cropping. J. Plant Nutr. Soil Sci. 177: 75–83. Search in Google Scholar

Sohi S.P., E. Krull, E. Lopez-Capel and R. Bol. 2010. A review of biochar and its use and function in soil. Adv. Agron. 105: 47–82.10.1016/S0065-2113(10)05002-9 Search in Google Scholar

Spokas K., J. Baker and D. Reicosky. 2010. Ethylene: potential key for biochar amendment impacts. Plant Soil 333: 443–452.10.1007/s11104-010-0359-5 Search in Google Scholar

Spokas K.A., K.B. Cantrell, J.M. Novak, D.W. Archerk, J.A. Ippolito, H.P. Collins, A.A. Boateng, I.M. Lima, M.C. Lamb, A.J. McAloon and others. 2012a. Biochar: a synthesis of its agronomic impact beyond carbon sequestration. J. Environ. Qual. 41: 973–989.10.2134/jeq2011.006922751040 Search in Google Scholar

Spokas K., J. Novak and R. Venterea. 2012b. Biochar’s role as an alternative N-fertilizer: ammonia capture. Plant Soil. 350: 35–42.10.1007/s11104-011-0930-8 Search in Google Scholar

Steiner C., K.C. Das, M. Garcia, B. Förster and W. Zech. 2008. Charcoal and smoke extract stimulate the soil microbial community in a highly weathered xanthic Ferralsol. Pedobiologia 51: 359–366.10.1016/j.pedobi.2007.08.002 Search in Google Scholar

Steiner C., M. Garcia and W. Zech. 2009. Effects of charcoal as slow release nutrient carrier on N-P-K dynamics and soil microbial population: pot experiments with Ferralsol substrate, pp. 325–338. In: Woods W., W. Teixeira, J. Lehmann, C. Steiner, A. WinklerPrins and L. Rebellato (eds.). Amazonian Dark Earths: Wim Sombroek’s Vision. Springer, Netherlands.10.1007/978-1-4020-9031-8_17 Search in Google Scholar

Street T.A., R.B. Doyle and D.C. Close. 2014. Biochar media addition impacts apple rootstock growth and nutrition. Hort Sci. 49: 1188–1193.10.21273/HORTSCI.49.9.1188 Search in Google Scholar

Sun D., L. Hale and D. Crowley. 2016. Nutrient supplementation of pinewood biochar for use as a bacterial inoculum carrier. Biol. Fertil Soils 52: 515–522.10.1007/s00374-016-1093-9 Search in Google Scholar

Thies J.E. and M. Rillig. 2009. Characteristics of biochar: biological properties, pp. 85–105. In: Lehmann J. and S. Joseph (eds). Biochar for environmental management: science and technology. Earthscan, London. Search in Google Scholar

Van Zwieten L., S. Kimber, S. Morris, K.Y Chan., A. Downie, J. Rust, S. Joseph and A. Cowie. 2010. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 327: 235–246.10.1007/s11104-009-0050-x Search in Google Scholar

Vanek S.J., J. Thies, B. Wang, K. Hanley and J. Lehmann. 2016. Pore-size and water activity effects on survival of Rhizobium tropici in biochar inoculant carriers. J. Microb. Biochem. Technol. 8: 296–306.10.4172/1948-5948.1000300 Search in Google Scholar

Vassilev N., E. Martos, G. Mendes, V. Martos and M. Vassileva. 2013. Biochar of animal origin: a sustainable solution to the global problem of high-grade rock phosphate scarcity? J. Sci. Food Agr. 93: 1799–1804.10.1002/jsfa.613023504602 Search in Google Scholar

Ventura M., C. Zhang, E. Baldi, F. Fornasier, G. Sorrenti, P. Panzacchi and G. Tonon. 2014. Effect of biochar addition on soil respiration partitioning and root dynamics in an apple orchard. Eur. J. Soil Sci. 65: 186–195.10.1111/ejss.12095 Search in Google Scholar

Wang Q., L. Chen, L.-Y. He and X.-F. Sheng. 2016. Increased biomass and reduced heavy metal accumulation of edible tissues of vegetable crops in the presence of plant growth-promoting Neorhizobium huautlense T1-17 and biochar. Agr. Ecosyst. Environ. 228: 9–18.10.1016/j.agee.2016.05.006 Search in Google Scholar

Wang Y., F. Pan, G. Wang, G. Zhang, Y. Wang, X. Chen and Z. Mao. 2014. Effects of biochar on photosynthesis and antioxidative system of Malus hupehensis Rehd. seedlings under replant conditions. Sci. Hortic. 175: 9–15.10.1016/j.scienta.2014.05.029 Search in Google Scholar

Wang Z.Y., H. Zheng, Y. Luo, X. Deng, S. Herbert and B.S. Xing. 2013. Characterization and influence of biochars on nitrous oxide emission from agricultural soil. Environ. Pollut. 174: 289–296.10.1016/j.envpol.2012.12.00323291210 Search in Google Scholar

Wang Z., H. Zong, H. Zheng, G. Liu, L. Chen and B. Xing. 2015. Reduced nitrification and abundance of ammonia-oxidizing bacteria in acidic soil amended with biochar. Chemosphere 138: 576–583.10.1016/j.chemosphere.2015.06.08426210022 Search in Google Scholar

Warnock D.D., D.L. Mummey, B. McBride, J. Major, J. Lehmann and M.C. Rillig. 2010. Influences of non-herbaceous biochar on arbuscular mycorrhizal fungal abundances in roots and soils: results from growth-chamber and field experiments. Appl. Soil Ecol. 46: 450–456.10.1016/j.apsoil.2010.09.002 Search in Google Scholar

William K. and R.A. Qureshi. 2015. Evaluation of biochar as fertilizer for the growth of some seasonal vegetables. J. Bioresource Manage 2(1): 41–46.10.35691/JBM.5102.0011 Search in Google Scholar

Yamato M., Y. Okimori, I.F. Wibowo, S. Anshori and M. Ogawa. 2006. Effects of the application of charred bark of Acacia mangium on the yield of maize, cowpea and peanut, and soil chemical properties in South Sumatra, Indonesia. Soil Sci. Plant Nutr. 52: 489–495. Search in Google Scholar

Yanai Y., K. Toyota and M. Okazaki. 2007. Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments. Soil Sci. Plant Nutr. 53: 181–188.10.1111/j.1747-0765.2007.00123.x Search in Google Scholar

Yao Y., B. Gao, M. Zhang, M. Inyang and A.R., Zimmerman. 2012. Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere 89: 1467–1471. Search in Google Scholar

Yilangai M.R., A.S. Manu, W. Pineau, S.S. Mailumo and K.I. Okeke-Agulu. 2014. The effect of biochar and crop veil on growth and yield of tomato (Lycopersicum esculentus Mill) in Jos, North central Nigeria. Curr. Agri. Res. 2(1): 37–42. Search in Google Scholar

Zwetsloot M.J., J. Lehmann, T. Bauerle, S. Vanek, R. Hestrin and A. Nigussie. 2016. Phosphorus availability from bone char in a P-fixing soil influenced by root-mycorrhizae-biochar interactions. Plant Soil 1–11.10.1007/s11104-016-2905-2Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo