1. bookVolume 65 (2016): Issue 2 (June 2016)
Journal Details
License
Format
Journal
eISSN
2544-4646
First Published
04 Mar 1952
Publication timeframe
4 times per year
Languages
English
access type Open Access

Biocontrol of Gray Mold Decay in Pear by Bacillus amyloliquefaciens Strain BA3 and its Effect on Postharvest Quality Parameters

Published Online: 07 Jun 2016
Volume & Issue: Volume 65 (2016) - Issue 2 (June 2016)
Page range: 171 - 176
Received: 29 Oct 2015
Accepted: 30 Nov 2015
Journal Details
License
Format
Journal
eISSN
2544-4646
First Published
04 Mar 1952
Publication timeframe
4 times per year
Languages
English
Abstract

The economic losses caused by postharvest fruits diseases have attracted global attention. Traditional chemical fungicide could not meet the need of humans. In recent years, microbial agent which has begun to take the place of chemical fungicide comes into people’s vision. The aim of this paper was to investigate the potential of Bacillus amyloliquefaciens strain BA3 for its biocontrol capability on gray mold decay of pears and its effect on postharvest quality of pears. Compared with other treatments, the inhibition effect on gray mold of washed cell suspension of B. amyloliquefaciens was the best. Consequently it was utilized in subsequent experiments. Spore germination and germ tube length of Botrytis cinerea was 18.72% and 12.85 μm treated with BA3, while the control group was 62.88% and 30.44 μm. We confirmed that increase of the concentration of B. amyloliquefaciens, improved the efficacy of BA3 in controlling gray mold decay of pears. Colonization variation of BA3 in wounds of pears was recorded. To begin with, the populations of B. amyloliquefaciens increased rapidly and remained stable. On the fourth day, there was a declining trend, after that the population increased to 4 × 105 CFU/wound and remained stable. BA3 had no significant effect on mass loss, titratable acidity, firmness and total soluble solids of pears that were stored at 25°C for 7 days comparing with control group. However, the effect of B. amyloliquefaciens on ascorbic acid was significantly higher than that of the control group. Our study indicates that B. amyloliquefaciens has a potential as postharvest biocontrol agent on pears.

Keywords

AOAC. 1995. Official Methods of Analysis, 16th edn. 45.1.14. AOAC, Arlington, Virginia. Search in Google Scholar

Arguelles-Arias A., M. Ongena, B. Halimi, Y. Lara, A. Brans, B. Joris and P. Fickers. 2009. Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens. Microb. Cell Fact. 8: 63–74.10.1186/1475-2859-8-63278749419941639 Search in Google Scholar

Askarne L., I. Talibi, H. Boubaker, E.H. Boudyach, F. Msanda, B. Saadi and A. Ait Ben Aoumar. 2012. Use of Moroccan medicinal plant extracts as botanical fungicide against citrus blue mould. Lett. Appl. Microbiol. 56: 37–43.10.1111/lam.1201223061438 Search in Google Scholar

Chen X.H., R. Scholz, M. Borriss, H. Junge, G. Mogel, S. Sunz and R. Borriss. 2009. Difficidin and bacilysin produced by plant-associated Bacillus amyloliquefaciens are efficient in controlling fire blight disease. J. Biotechnol. 140: 38–44.10.1016/j.jbiotec.2008.10.01519061923 Search in Google Scholar

Fan Q. and S.P. Tian. 2000. Postharvest biological control of rhizopus rot of nectarine fruits by Pichia membranefaciens. Plant Dis. 84: 1212–1216.10.1094/PDIS.2000.84.11.121230832169 Search in Google Scholar

Feng L.Y., F.W. Wu, J. Li, Y.M. Jiang and X.W. Duan. 2011. Antifungal activities of polyhexamethylene biguanide and polyhexamethylene guanide against the citrus sour rot pathogen Geotrichum citri-aurantii in vitro and in vivo. J. Basic Microbiol. 61: 160–164.10.1016/j.postharvbio.2011.03.002 Search in Google Scholar

Hu H., F.J. Yan, C. Wilson, Q. Shen and X.D. Zheng. 2015. The ability of a cold-adapted Rhodotorula mucilaginosa strain from Tibet to control blue mold in pear fruit. http://link.springer.com/article/0.1007%2Fs10482-015-0593-1. 2015.10.10. Search in Google Scholar

Jamalizadeh M., H.R. Etebarian, H. Aminian and A. Alizadeh. 2011. A review of mechanisms of action of biological controlorganisms against post-harvest fruit spoilage. Bulletin OEPP/EPPO 41: 65–71.10.1111/j.1365-2338.2011.02438.x Search in Google Scholar

Li R., H. Zhang, W. Liu and X.D. Zheng. 2011. Biocontrol of postharvest gray and blue mold decay of apples with Rhodotorula mucilaginosa and possible mechanisms of action. Int. J. Food Microbiol. 146: 151–156.10.1016/j.ijfoodmicro.2011.02.01521402429 Search in Google Scholar

Liu H.M., J.H. Guo, Y.J. Cheng, L. Luo, P. Liu, B.Q. Wang, B.X. Deng and C.A. Long. 2010. Control of gray mold of grape by Hanseniaspora uvarum and its effects on postharvest quality parameters. Ann. Microbiol. 60: 31–35.10.1007/s13213-010-0018-3 Search in Google Scholar

Liu J., Y. Sui, M. Wisniewski, S. Droby and Y. Liu. 2013. Review: Utilization of antagonistic yeasts to manage postharvest fungal diseases of fruit. Int. J. Food Microbiol. 167: 153–160.10.1016/j.ijfoodmicro.2013.09.00424135671 Search in Google Scholar

Luo S.S., B. Wan, S.H. Feng and Y.Z. Shao. 2015. Biocontrol of Postharvest Anthracnose of Mango Fruit with Debaryomyces Nepalensis and Effects on Storage Quality and Postharvest Physiology. http://onlinelibrary.wiley.com/doi/10.1111/1750-3841.13087/full. 2015.10.07. Search in Google Scholar

Lutz M.C., C.A. Lopes, M.E. Rodriguez, M.C. Sosa and M.P. Sangorrín. 2013. Efficacy and putative mode of action of native and commercial antagonistic yeasts against postharvest pathogens of pear. Int. J. Food Microbiol. 164: 166–172.10.1016/j.ijfoodmicro.2013.04.00523680800 Search in Google Scholar

Manso T. and C. Nunes. 2011. Metschnikowia andauensis as a new biocontrol agent of fruit postharvest diseases. Postharvest Biol. Technol. 61: 64–71.10.1016/j.postharvbio.2011.02.004 Search in Google Scholar

Özden Ç. and L. Bayindirli. 2002. Effects of combinational use of controlled atmosphere, cold storage and edible coating applications on shelf life and quality attributes of green peppers. Eur. Food Res. Technol. 214: 320–326. Search in Google Scholar

Sansone G., I. Rezza, V. Calvente, D. Benuzzi and M.I.S. Tosetti. 2005. Control of Botrytis cinerea strains resistant to iprodione in apple with rhodotorulic acid and yeasts. Postharvest Biol. Technol. 35: 245–251.10.1016/j.postharvbio.2004.09.005 Search in Google Scholar

Sharma R., D. Singh and R. Singh. 2009. Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: a review. Biol. Control. 50: 205–221.10.1016/j.biocontrol.2009.05.001 Search in Google Scholar

Spadaro D., A. Lore, A. Garibaldi and M.L. Gullino. 2013. A new strain of Metschnikowia fructicola for postharvest control of Penicillium expansum and patulin accumulation on four cultivars of apple. Postharvest Biol. Technol. 75: 1–8.10.1016/j.postharvbio.2012.08.001 Search in Google Scholar

Solanki M.K., A.S. Robert, R.K. Singh, S. Kumar, A.K. Pandey, A.K. Srivastava and D.K. Arora. 2012. Characterization of mycolytic enzymes of Bacillus strains and their bio-protection role against Rhizoctonia solani in tomato. Curr. Microbiol. 65: 330–336.10.1007/s00284-012-0160-122684745 Search in Google Scholar

Solanki M.K., R.K. Singh, S. Srivastava, S. Kumar, P.L. Kashyap and A.K. Srivastava. 2013. Characterization of antagonistic-potential of two Bacillus strains and their biocontrol activity against Rhizoctonia solani in tomato. J. Basic Microbiol. 53: 1–9.10.1002/jobm.20130052824277414 Search in Google Scholar

Sugar D. and S.R. Basile. 2011. Orchard calcium and fungicide treatments mitigate effects of delayed postharvest fungicide applications for control of postharvest decay of pear fruit. Postharvest Biol. Technol. 60: 52–56.10.1016/j.postharvbio.2010.11.007 Search in Google Scholar

Yang Y.N., G.F. Yao, W.Q. Yue, S.L. Zhang and J. Wu. 2015. Transcriptome profiling reveals differential gene expression in proanthocyanidin biosynthesis associated with red/green skin color mutant of pear (Pyrus communis L.). Front. Plant Sci. 6: 795.10.3389/fpls.2015.00795458870126483812 Search in Google Scholar

Yu T., C. Yu, H.P. Lu, M. Zunun, F.X. Chen, T. Zhou, K. Sheng and X.D. Zheng. 2012. Effect of Cryptococcus laurentii and calcium chloride on control of Penicillium expansum and Botrytis cinerea infections in pear fruit. Biol. Control. 61:169–175.10.1016/j.biocontrol.2012.01.012 Search in Google Scholar

Yu C., T. Zhou, K. Sheng, L.Z. Zeng, C.Z. Ye, T. Yu and X.D. Zheng. 2013. Effect of pyrimethanil on Cryptococcus laurentii, Rhodosporidium paludigenum, and Rhodotorula glutinis biocontrol of Penicillium expansum infection in pear fruit. Int. J. Food Microbiol. 164: 155–160. Search in Google Scholar

Zhang H.Y., L. Wang, Y. Dong, S. Jiang, H.H. Zhang and X.D. Zheng. 2008a. Control of postharvest pear diseases using Rhodotorula glutinis and its effects on postharvest quality parameters. Int. J. Food Microbiol. 126: 167–171.10.1016/j.ijfoodmicro.2008.05.01818579245 Search in Google Scholar

Zhang H.Y., L.C. Ma, L. Wang, S. Jiang, Y. Dong and X.D. Zheng. 2008b. Biocontrol of gray mold decay in peach fruit by integration of antagonistic yeast with salicylic acid and their effects on postharvest quality parameters. Biol. Control. 47: 60–65.10.1016/j.biocontrol.2008.06.012 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo