[
Abbaspour, A., Yen, K.K., Forouzannezhad, P. and Sargolzaei, A. (2018). A neural adaptive approach for active fault-tolerant control design in UAV, IEEE Transactions on Systems, Man, and Cybernetics: Systems 50(9): 3401–3411.10.1109/TSMC.2018.2850701
]Search in Google Scholar
[
Altan, A. and Hacıoğlu, R. (2020). Model predictive control of three-axis gimbal system mounted on UAV for real-time target tracking under external disturbances, Mechanical Systems and Signal Processing 138(2020): 106548.10.1016/j.ymssp.2019.106548
]Search in Google Scholar
[
Azzoug, Y., Sahraoui, M., Pusca, R., Ameid, T., Romary, R. and Cardoso, A.J.M. (2021). Current sensors fault detection and tolerant control strategy for three-phase induction motor drives, Electrical Engineering 103(2): 881–898.10.1007/s00202-020-01120-5
]Search in Google Scholar
[
Camci, F., Medjaher, K., Atamuradov, V. and Berdinyazov, A. (2019). Integrated maintenance and mission planning using remaining useful life information, Engineering Optimization 51(10): 1794–1809.10.1080/0305215X.2018.1552951
]Search in Google Scholar
[
Chen, F., Gong, J. and Li, Y. (2019). Adaptive diagnosis and compensation for hypersonic flight vehicle with multisensor faults, International Journal of Robust and Nonlinear Control 29(17): 6145–6163.10.1002/rnc.4711
]Search in Google Scholar
[
Chung, W. and Son, H. (2020). Fault-tolerant control of multirotor UAVs by control variable elimination, IEEE/ASME Transactions on Mechatronics 25(5): 2513–2522.10.1109/TMECH.2020.2982436
]Search in Google Scholar
[
Habibi, H., Howard, I. and Simani, S. (2019). Reliability improvement of wind turbine power generation using model-based fault detection and fault tolerant control: A review, Renewable Energy 135(2019): 877–896.10.1016/j.renene.2018.12.066
]Search in Google Scholar
[
Hamadi, H., Lussier, B., Fantoni, I., Francis, C. and Shraim, H. (2020). Comparative study of self tuning, adaptive and multiplexing FTC strategies for successive failures in an octorotor UAV, Robotics and Autonomous Systems 133(2020): 103602.10.1016/j.robot.2020.103602
]Search in Google Scholar
[
Hamdi, H., Rodrigues, M., Rabaoui, B. and Benhadj Braiek, N. (2021). A fault estimation and fault-tolerant control based sliding mode observer for LPV descriptor systems with time delay, International Journal of Applied Mathematics and Computer Science 31(2): 247–258, DOI: 10.34768/amcs-2021-0017.
]Open DOISearch in Google Scholar
[
Hu, K., Li, W. and Cheng, Z. (2021). Fuzzy adaptive fault diagnosis and compensation for variable structure hypersonic vehicle with multiple faults, PLOS ONE 16(8): e0256200.10.1371/journal.pone.0256200836302534388226
]Search in Google Scholar
[
INTECO (2007). Two Rotor Aerodynamical System: User’s Manual, INTECO, Kraków.
]Search in Google Scholar
[
Kukurowski, N., Pazera, M. and Witczak, M. (2021). Fault-tolerant tracking control and remaining useful life estimation for Takagi–Sugeno fuzzy system, 2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Luxembourg, pp. 687–693.
]Search in Google Scholar
[
Li, L., Luo, H., Ding, S.X., Yang, Y. and Peng, K. (2019). Performance-based fault detection and fault-tolerant control for automatic control systems, Auto-matica 99(2019): 308–316.10.1016/j.automatica.2018.10.047
]Search in Google Scholar
[
Liu, F., Tang, H., Luo, J., Bai, L. and Pu, H. (2021). Fault-tolerant control of active compensation toward actuator faults: An autonomous underwater vehicle example, Applied Ocean Research 110(2021): 102597.10.1016/j.apor.2021.102597
]Search in Google Scholar
[
Manohar, M. and Das, S. (2020). Notice of removal: Current sensor fault-tolerant control of induction motor driven electric vehicle using flux-linkage observer, 2020 IEEE Transportation Electrification Conference & Expo (ITEC), Chicago, USA, pp. 884–889.
]Search in Google Scholar
[
Mrugalski, M. (2014). Advanced Neural Network-based Computational Schemes for Robust Fault Diagnosis, Springer, Berlin.10.1007/978-3-319-01547-7
]Search in Google Scholar
[
Nguyen, D.-T., Saussié, D. and Saydy, L. (2017). Robust self-scheduled fault-tolerant control of a quadrotor UAV, IFAC-PapersOnLine 50(1): 5761–5767.10.1016/j.ifacol.2017.08.1141
]Search in Google Scholar
[
Patel, H.R. and Shah, V.A. (2019). A passive fault-tolerant control strategy for a non-linear system: An application to the two tank conical non-interacting level control system, Maskay 9(1): 1–8.10.24133/maskay.v9i1.1094
]Search in Google Scholar
[
Pazera, M. and Witczak, M. (2019). Towards robust simultaneous actuator and sensor fault estimation for a class of nonlinear systems: Design and comparison, IEEE Access 7: 97143–97158.10.1109/ACCESS.2019.2929764
]Search in Google Scholar
[
Petritoli, E., Leccese, F. and Ciani, L. (2018). Reliability and maintenance analysis of unmanned aerial vehicles, Sensors 18(9): 3171.10.3390/s18093171616507330235897
]Search in Google Scholar
[
Prochazka, K.F. and Stomberg, G. (2020). Integral sliding mode based model reference FTC of an over-actuated hybrid UAV using online control allocation, 2020 American Control Conference (ACC), Denver, USA, pp. 3858–3864.
]Search in Google Scholar
[
Rodrigues, L.R., Gomes, J.P. and Alcântara, J.F. (2018). Embedding remaining useful life predictions into a modified receding horizon task assignment algorithm to solve task allocation problems, Journal of Intelligent & Robotic Systems 90(1): 133–145.10.1007/s10846-017-0649-8
]Search in Google Scholar
[
Sadhu, V., Zonouz, S. and Pompili, D. (2020). On-board deep-learning-based unmanned aerial vehicle fault cause detection and identification, 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, pp. 5255–5261.
]Search in Google Scholar
[
Saied, M., Lussier, B., Fantoni, I., Shraim, H. and Francis, C. (2020). Active versus passive fault-tolerant control of a redundant multirotor UAV, Aeronautical Journal 124(1273): 385–408.10.1017/aer.2019.149
]Search in Google Scholar
[
Sun, K. and Liu, X. (2021). Path planning for an autonomous underwater vehicle in a cluttered underwater environment based on the heat method, International Journal of Applied Mathematics and Computer Science 31(2): 289–301, DOI: 10.34768/amcs-2021-0020.
]Open DOISearch in Google Scholar
[
Taimoor, M., Lu, X., Maqsood, H. and Sheng, C. (2021). Adaptive rapid neural observer-based sensors fault diagnosis and reconstruction of quadrotor unmanned aerial vehicle, Aircraft Engineering and Aerospace Technology 93(5): 847–861.10.1108/AEAT-01-2021-0005
]Search in Google Scholar
[
Tang, H., Chen, Y. and Zhou, A. (2021). Actuator fault-tolerant control for four-wheel-drive-by-wire electric vehicle, IEEE Transactions on Transportation Electrification 8(2): 2361–2373.10.1109/TTE.2021.3136893
]Search in Google Scholar
[
Veremey, E.I. (2021). An approximate solution of the affine-quadratic control problem based on the concept of optimal damping, International Journal of Applied Mathematics and Computer Science 31(1): 5–15, DOI: 10.34768/amcs-2021-0001.
]Open DOISearch in Google Scholar
[
Vural, S.Y., Dasdemir, J. and Hajiyev, C. (2018). Passive fault tolerant lateral controller design for an UAV, IFACPapersOnLine 51(30): 446–451.10.1016/j.ifacol.2018.11.320
]Search in Google Scholar
[
Wang, X. (2020). Active fault tolerant control for unmanned underwater vehicle with sensor faults, IEEE Transactions on Instrumentation and Measurement 69(12): 9485–9495.10.1109/TIM.2020.3003108
]Search in Google Scholar
[
Witczak, M. (2014). Fault Diagnosis and Fault-Tolerant Control Strategies for Non-Linear Systems, Springer, Heidelberg.10.1007/978-3-319-03014-2
]Search in Google Scholar
[
Witczak, M., Buciakowski, M. and Aubrun, C. (2016a). Predictive actuator fault-tolerant control under ellipsoidal bounding, International Journal of Adaptive Control and Signal Processing 30(2): 375–392.10.1002/acs.2567
]Search in Google Scholar
[
Witczak, M., Buciakowski, M. and Mrugalski, M. (2014). An H_infinity approach to fault estimation of non-linear systems: application to one-link manipulator, Methods and Models in Automation and Robotics, MMAR, Międzyzdroje, Poland, pp. 456–461.
]Search in Google Scholar
[
Witczak, M., Buciakowski, M., Puig, V., Rotondo, D. and Nejjari, F. (2016b). An LMI approach to robust fault estimation for a class of nonlinear systems, International Journal of Robust and Nonlinear Control 26(7): 1530–1548.10.1002/rnc.3365
]Search in Google Scholar
[
Witczak, M., Mrugalski, M., Pazera, M. and Kukurowski, N. (2020). Fault diagnosis of an automated guided vehicle with torque and motion forces estimation: A case study, ISA Transactions 104(2020): 370–381.10.1016/j.isatra.2020.05.01232439131
]Search in Google Scholar
[
Yu, Z., Zhang, Y., Jiang, B., Su, C.-Y., Fu, J., Jin, Y. and Chai, T. (2021). Nussbaum-based finite-time fractional-order backstepping fault-tolerant flight control of fixed-wing UAV against input saturation with hardware-in-the-loop validation, Mechanical Systems and Signal Processing 153(2021): 107406.10.1016/j.ymssp.2020.107406
]Search in Google Scholar
[
Zemouche, A. and Boutayeb, M. (2013). On LMI conditions to design observers for Lipschitz nonlinear systems, Auto-matica 49(2): 585–591.10.1016/j.automatica.2012.11.029
]Search in Google Scholar
[
Zhang, X., Zhao, Z., Wang, Z. and Wang, X. (2021). Fault detection and identification method for quadcopter based on airframe vibration signals, Sensors 21(2): 581.10.3390/s21020581783065033467463
]Search in Google Scholar