[
[1] Fábián E. R., Kuti J., Gáti J., Tóth L.: Corrosion Behaivor of Welded Joints in Different Stainless Steels. Revista De Chimie, 2020. 440–449. https://doi.org/10.37358/RC.20.3.801810.37358/RC.20.3.8018
]Search in Google Scholar
[
[2] Kovács T., Pinke P., Széll K.: Vékony lemezek hegesztés technológiájának tervezése / Welding Processes Specification of thin Sheets. Abstracts Book of 10th International Engineering Symposium at Bánki, 2018. 51.
]Search in Google Scholar
[
[3] Dadfar M., Fathi M.H., Karimzadeh F., Dadfar M. R., Saatchi A.: Effect of TIG welding on corrosion behavior of 316L stainless steel. Materials Letters, 61. (2007) 2343–2346.
]Search in Google Scholar
[
[4] Kovács-Coskun T., Pinke P., Bitay E.: A szemcseméret és a mechanikai tulajdonságok kapcsolatának vizsgálata hegesztett varratoknál. Műszaki Tudományos Közlemények, 1. (2014) 125–130. https://doi.org/10.33895/mtk-2014.01.1110.33895/mtk-2014.01.11
]Search in Google Scholar
[
[5] Tóth L., Fábián E. R., Huszák Cs.: Heat treatment Effects on Properties of K110 Böhler Steel. Abstracts Book of 10th International Engineering Symposium at Bánki, 2018. 85.
]Search in Google Scholar
[
[6] Tóth L., Uri Szabó D.: A mélyhűtés hatásai a szerszámacélok tulajdonságaira / The effects of the cryogenic treatment on the tool steel properties. XXIX. Hőkezelő és Anyagtudomány a gépgyártásban Konferencia, 2020. 1–7.
]Search in Google Scholar
[
[7] Fábián E. R., Tóth. L., Huszák Cs.: Examination of Heat Treatment on the Microstructure and Wear of Tool Steels. Acta Materialia Transylvanica, 2/2. (2019) 87–92. https://doi.org/10.33924/amt-2019-02-0410.33924/amt-2019-02-04
]Search in Google Scholar
[
[8] Kovács T. A., Mhatre U., Nyikes Z., Bitay E.: Surface Modification Innovation for Wear Resistance Increasing. Iop Conference Series: Materials Science and Engineering, (2019) 613. https://doi.org/10.1088/1757-899X/613/1/01203910.1088/1757-899X/613/1/012039
]Search in Google Scholar
[
[9] Gavriljuk V. G, Theisen W., Sirosh V. V.: Low-temperature martensitic transformation in tool steels in relation to their deep cryogenic treatment. Acta Materiala, 61. (2013) 1705–1715. https://doi.org/10.1016/j.actamat.2012.11.04510.1016/j.actamat.2012.11.045
]Search in Google Scholar
[
[10] Das D., Dutta A. K., Toppo V., Ray K. K.: Effect of deep cryogenic treatment on the carbide precipitation and tribological behaviour of D2 steel. Materials Manufacturing Process, 22. (2007) 474–480. https://doi.org/10.1080/1042691070123593410.1080/10426910701235934
]Search in Google Scholar
[
[11] Molinari A., Pellizzari M., Gialanella S., Straffelini G., Stiasny K. H.: Effect of deep cryogenic treatment on the mechanical properties of tool steels. Journal of Materials Processing Technology, 118/1–3. (2001) 350–355. https://doi.org/10.1016/s0924-0136(01)00973-610.1016/S0924-0136(01)00973-6
]Search in Google Scholar
[
[12] Das D., Sarkar R., Dutta A. K., Ray K. K.: Influence of sub-zero treatments on fracture toughness of AISI D2 steel. Materials Science and Engineering A, 528/2. (2010) 589–603. https://doi.org/10.1016/j.msea.2010.09.05710.1016/j.msea.2010.09.057
]Search in Google Scholar
[
[13] Das D., Dutta A. K, Ray K. K.: Sub-zero treatments of AISI D2 steel: part II. Wear behavior. Materials Science and Engineering A, 527/9. (2010) 2194–2206. https://doi.org/10.1016/j.msea.2009.10.07110.1016/j.msea.2009.10.071
]Search in Google Scholar
[
[14] Kumar S.; Nagaraj M., Khedkar N. K., Bongale A: Influence of deep cryogenic treatment on dry sliding wear behaviour of AISI D3 die steel. Materials Research Express, 5/11. (2018) 116525, 1–9. https://doi.org/10.1088/2053-1591/aadeba10.1088/2053-1591/aadeba
]Search in Google Scholar