[
[1] Herdt B. L., Black E. P., Zhou S. S., Wilde C. J.: Inactivation of SARS-CoV-2 by 2 commercially available Benzalkonium chloride-based hand sanitizers in comparison with an 80% ethanol-based hand sanitizer. Infection Prevention in Practice, 3. (2021) 100191. https://doi.org/10.1016/j.infpip.2021.10019110.1016/j.infpip.2021.100191861393034853831
]Search in Google Scholar
[
[2] Aodah A. H., Bakr A. A., Booq R. Y., Rahman M. J., Alzahrani D. A., Alsulami K. A., Alshaya H. A., Alsuabeyl M. S., Alyamani E. J., Tawfik E. A.: Preparation and evaluation of benzalkonium chloride hand sanitizer as a potential alternative for alcohol-based hand gels. Saudi Pharmaceutical Journal, 29. (2021) 807–814. https://doi.org/10.1016/j.jsps.2021.06.00210.1016/j.jsps.2021.06.002836310734408542
]Search in Google Scholar
[
[3] Ogilvie B. H., Solis-Leal A., Lopez J. B., Poole B. D., Robison R. A., Berges B. K.: Alcohol-free hand sanitizer and other quaternary ammonium disinfectants quickly and effectively inactivate SARSCoV-2. Journal of Hospital Infection, 108. (2021) 142–145. https://doi.org/10.1016/j.jhin.2020.11.02310.1016/j.jhin.2020.11.023770001033259880
]Search in Google Scholar
[
[4] Kim S., Ji K., Shin H., Park S., Kho Y., Park K., Kim K., Choi K.: Occurrences of benzalkonium chloride in streams near a pharmaceutical manufacturing complex in Korea and associated ecological risk. Chemosphere, 256. (2020) 127084. https://doi.org/10.1016/j.chemosphere.2020.12708410.1016/j.chemosphere.2020.12708432460158
]Search in Google Scholar
[
[5] Yang R., Zhou S., Zhang L., Qin C.: Pronounced temporal changes in soil microbial community and nitrogen transformation caused by benzalkonium chloride. Journal of Environmental Sciences, (2022). https://doi.org/10.1016/j.jes.2022.04.00410.1016/j.jes.2022.04.004955340536503808
]Search in Google Scholar
[
[6] Khan A. H., Libby M., Winnick D., Palmer J., Sumarah M., Ray M. B., Macfie S. M.: Uptake and phytotoxic effect of benzalkonium chlorides in Lepidium sativum and Lactuca sativa. Journal of Environmental Management, 206. (2018) 490–497. https://doi.org/10.1016/j.jenvman.2017.10.07710.1016/j.jenvman.2017.10.07729127920
]Search in Google Scholar
[
[7] Pereira B. M. P., Tagkopoulos I.: Benzalkonium chlorides: Uses, regulatory status, and microbial resistance. Applied and Environmental Microbiology, 85. (2019) 1–27. https://doi.org/10.1128/AEM.00377-1910.1128/AEM.00377-19658115931028024
]Search in Google Scholar
[
[8] Zanini G. P., Ovesen R. G., Hansen H. C. B., Strobel B. W.: Adsorption of the disinfectant benzalkonium chloride on montmorillonite. Synergistic effect in mixture of molecules with different chain lengths. Journal of Environmental Management, 128. (2013) 100–105. https://doi.org/10.1016/j.jenvman.2013.04.05610.1016/j.jenvman.2013.04.05623722179
]Search in Google Scholar
[
[9] Ndabambi M., Kwon J. H.: Benzalkonium ion sorption to peat and clays: Relative contributions of ion exchange and van der Waals interactions. Chemosphere, 247. (2020) 125924. https://doi.org/10.1016/j.chemosphere.2020.12592410.1016/j.chemosphere.2020.12592431978661
]Search in Google Scholar
[
[10] Kim T. K., Jang M., Hwang Y. S.: Adsorption of benzalkonium chlorides onto polyethylene microplastics: Mechanism and toxicity evaluation. Journal of Hazardous Materials, 426. (2022) 128076. https://doi.org/10.1016/j.jhazmat.2021.12807610.1016/j.jhazmat.2021.12807634952503
]Search in Google Scholar
[
[11] Ghosh I., Kar S., Chatterjee T., Bar N., Das S. K.: Removal of methylene blue from aqueous solution using Lathyrus sativus husk: Adsorption study, MPR and ANN modelling. Process Safety and Environmental Protection, 149. (2021) 345–361. https://doi.org/10.1016/j.psep.2020.11.00310.1016/j.psep.2020.11.003
]Search in Google Scholar
[
[12] Ahmad Z. U., Yao L., Lian Q., Islam F., Zappi M. E., Gang D. D.: The use of artificial neural network (ANN) for modeling adsorption of sunset yellow onto neodymium modified ordered mesoporous carbon. Chemosphere, 256. (2020) 127081. https://doi.org/10.1016/j.chemosphere.2020.12708110.1016/j.chemosphere.2020.12708132447112
]Search in Google Scholar
[
[13] Pai K. N., Nguyen T. T. T., Prasad V., Rajendran A.: Experimental validation of an adsorbent-agnostic artificial neural network (ANN) framework for the design and optimization of cyclic adsorption processes. Separation and Purification Technology, (2022) 120783. https://doi.org/10.1016/j.seppur.2022.12078310.1016/j.seppur.2022.120783
]Search in Google Scholar
[
[14] Fagundez J. L. S., Netto M. S., Dotto G. L., Salau N. P. G.: A new method of developing ANN-isotherm hybrid models for the determination of thermodynamic parameters in the adsorption of ions Ag+, Co2+ and Cu2+ onto zeolites ZSM-5, HY, and 4A. Journal of Environmental Chemical Engineering, 9. (2021) 106126. https://doi.org/10.1016/j.jece.2021.10612610.1016/j.jece.2021.106126
]Search in Google Scholar
[
[15] Gevrey M., Dimopoulos I., Lek S.: Review and comparison of methods to study the contribution of variables in artificial neural network models. Ecological Modelling, 160. (2003) 249–264. https://doi.org/10.1016/S0304-3800(02)00257-010.1016/S0304-3800(02)00257-0
]Search in Google Scholar