[
[1] Karlhuber M.: Development of a method for the analysis of the wear of retrieved polyethylene components of total knee arthroplasty. Thesis, Technical University of Hamburg, Germany, 1995.
]Search in Google Scholar
[
[2] Kurtz S. M.: UHMWPE Biomaterials handbook. San Diego: Elsevier; 2009.
]Search in Google Scholar
[
[3] O’Brien S., Luo Y., Wu C., Petrak M., Bohm E., Brandt J. M.: Computational development of polyethylene wear model for the articular backside surfaces in modular total knee replacements. Tribology International, 59. (2013). 284–91. https://doi.org/10.1016/j.triboint.2012.03.02010.1016/j.triboint.2012.03.020
]Search in Google Scholar
[
[4] Wimmer M. A., Andriacchi T. P.: Tractive forces during rolling motion of the knee: Implications for wear in total knee replacement. Journal of Biomechanics, 30. (1997) 131–137. https://doi.org/10.1016/s0021-9290(96)00112-110.1016/S0021-9290(96)00112-1
]Search in Google Scholar
[
[5] Wimmer M. A., Andriacchi T. P., Natarajan R. N., Loos J., Karlhuber M., Petermann J., Schneider E., Rosenberg A. G.: A striated pattern of wear in ultrahigh-molecular-weight polyethylene components of Miller-Galante total knee arthroplasty. The Journal of Arthroplasty, 13. (1998) 8–16. https://doi.org/10.1016/s0883-5403(98)90069-910.1016/S0883-5403(98)90069-9
]Search in Google Scholar
[
[6] Patten E. W., Van Citters D., Ries M. D., Pruitt L. A.: Wear of UHMWPE from sliding, rolling, and rotation in a multidirectional tribo-system. Wear, 304. (2013) 60–66. https://doi.org/10.1016/j.wear.2013.04.01710.1016/j.wear.2013.04.017
]Search in Google Scholar
[
[7] Patten E. W., Van Citters D., Ries M. D., Pruitt L. A.: Quantifying cross-shear under translation, rolling, and rotation, and its effect on UHMWPE wear. Wear, 313. (2014) 125–134. https://doi.org/10.1016/j.wear.2014.03.00110.1016/j.wear.2014.03.001
]Search in Google Scholar
[
[8] McGloughlin T., Kavanagh A.: The influence of slip ratios in contemporary TKR on the wear of ultra-high molecular weight polyethylene (UHMWPE): An experimental view. Journal of Biomechanics, 31. (1998) 8. https://doi.org/10.1016/s0021-9290(98)80015-810.1016/S0021-9290(98)80015-8
]Search in Google Scholar
[
[9] Hollman J. H., Deusinger R. H., Van Dillen L. R., Matava M. J.: Knee joint movements in subjects without knee pathology and subjects with injured anterior cruciate ligaments. Physical Therapy, 82. (2002) 960–972. https://doi.org/10.1093/ptj/82.10.96010.1093/ptj/82.10.960
]Search in Google Scholar
[
[10] Nägerl H., Frosch K. H., Wachowski M. M., Dumont C., Abicht Ch., Adam P., Kubein-Meesenburg D.: A novel total knee replacement by rolling articulating surfaces. In vivo functional measurements and tests. Acta of Bioengineering and Bio-mechanics, 10. (2008) 55–60.
]Search in Google Scholar
[
[11] Fekete G., Csizmadia B. M., Wahab M. A., De Baets P., Vanegas-Useche L. V., Bíró I.: Patellofemoral model of the knee joint under non-standard squatting. Dyna Colombia, 81. (2014) 60–67. https://doi.org/10.15446/dyna.v81n183.36171.10.15446/dyna.v81n183.36171
]Search in Google Scholar
[
[12] Mattei L., Di Puccio F., Ciulli E.: A comparative study of wear laws for soft-on-hard hip implants using a mathematical wear model. Tribology International, 63. (2013) 66–77. https://doi.org/10.1016/j.triboint.2012.03.00210.1016/j.triboint.2012.03.002
]Search in Google Scholar
[
[13] Archard J. F., Hirst W.: The wear of metals under unlubricated conditions. Proceedings of the Royal Society, A 236. (1956) 397–410. https://doi.org/10.1098/rspa.1956.014410.1098/rspa.1956.0144
]Search in Google Scholar
[
[14] Hussin M. S., Fernandez J., Ramezani M., Kumar P., Kelly P. A.: Analytical and computational sliding wear prediction in a novel knee implant: a case study. Computer Methods in Biomechanics and Biomedical Engineering, 23/4. (2020) 1–13. https://doi.org/10.1080/10255842.2019.170911810.1080/10255842.2019.170911831928215
]Search in Google Scholar
[
[15] Innocenti B., Labey L., Kamali A., Pascale W., Pianigian S.: Development and Validation of a Wear Model to Predict Polyethylene Wear in a Total Knee Arthroplasty: A Finite Element Analysis. Lubricants, 2/4. (2014) 1–13. https://doi.org/10.3390/lubricants204019310.3390/lubricants2040193
]Search in Google Scholar
[
[16] Turell M, Wang A, Bellare A.: Quantification of the effect of cross-path motion on the wear rate of ultra-high molecular weight polyethylene. Wear, 255. (2003) 1034–1039. https://doi.org/10.1016/S0043-1648(03)00357-010.1016/S0043-1648(03)00357-0
]Search in Google Scholar
[
[17] O’Brien S. T., Bohm E. R., Petrak M. J., Wyss U. P., Brandt J-M.: An energy dissipation and cross shear time dependent computational wear model for the analysis of polyethylene wear in total knee replacements. Journal of Biomechanics, 47. (2014) 1127–1133. https://doi.org/10.1016/j.jbiomech.2013.12.01710.1016/j.jbiomech.2013.12.01724480701
]Search in Google Scholar
[
[18] Abdelgaied A., Liu F., Brockett C., Jennings L., Fisher J., Jin Z.: Computational wear prediction of artificial knee joints based on a new wear law and formulation. Journal of Biomechanics, 44. (2011) 1108–1116. https://doi.org/10.1016/j.jbiomech.2011.01.02710.1016/j.jbiomech.2011.01.02721329928
]Search in Google Scholar
[
[19] Fekete G.: Computational study on lateral and medial wear characterization in knee implants by a multibody dynamic system. Acta Mechanica, 232. (2021) 1075–1086. https://doi.org/10.1007/s00707-020-02868-410.1007/s00707-020-02868-4
]Search in Google Scholar
[
[20] Fekete G., De Baets P., Wahab M. A., Csizmadia B. M., Katona G., Vanegas-Useche L. V., Solanilla J. A.: Sliding-rolling ratio during deep squat with regard to different knee prostheses. Acta Polytechica Hungarica, 9. (2012) 5–24.
]Search in Google Scholar
[
[21] Wasielewski R. C., Galante J. O., Leighty R. M., Natarajan R. N., Rosenberg A. G.: Wear patterns on retrieved polyethylene tibial inserts and their relationship to technical considerations during total knee arthroplasty. Clinical Orthopaedics and Related Research, 299. (1994) 31–43.
]Search in Google Scholar