1. bookVolume 5 (2022): Issue 1 (April 2022)
Journal Details
License
Format
Journal
eISSN
2601-8799
First Published
30 Jan 2019
Publication timeframe
2 times per year
Languages
English
access type Open Access

Estimation of Dislocation Distribution at Mid Thickness for 1050 Al

Published Online: 20 Jul 2022
Volume & Issue: Volume 5 (2022) - Issue 1 (April 2022)
Page range: 6 - 9
Journal Details
License
Format
Journal
eISSN
2601-8799
First Published
30 Jan 2019
Publication timeframe
2 times per year
Languages
English
Abstract

The current study reports three different techniques to estimate the distribution of dislocation density at the mid thickness of 1050 Al alloy. It is well known that the strain distribution is inhomogeneous through the thickness of rolled materials, which affects the evolution of dislocation density during the process of deformation. In this study, the number of dislocations was calculated experimentally using indentation technique in 46.8% cold rolled 1050 Al sheet and the result was verified by two numerical methods.

Keywords

[1] Humphreys F. J., Humphreys F. J., Rohrer G. S., Rollett A. D., Rollett A. D.: Recrystallization and related annealing phenomena, Third edition. Amsterdam Oxford Cambridge, MA: Elsevier, 2017. Search in Google Scholar

[2] Callister W. D., Callister W. D.: Fundamentals of materials science and engineering: an interactive etext. New York: Wiley, 2001. Search in Google Scholar

[3] Csontos A. A., Starke E. A.: The effect of inhomogeneous plastic deformation on the ductility and fracture behavior of age hardenable aluminium alloys. International Journal of Plasticity, 21/6. (2005) 1097–1118. https://doi.org/10.1016/j.ijplas.2004.03.003 Search in Google Scholar

[4] Sidor J. J., Chakravarty P., Bátorfi J. Gy., Nagy P., Xie Q., Gubicza J.: Assessment of Dislocation Density by Various Techniques in Cold Rolled 1050 Aluminum Alloy. Metals, 11/10. (2021) 1571. https://doi.org/10.3390/met11101571 Search in Google Scholar

[5] Taheri M., Weiland H., Rollett A.: A method of measuring stored energy macroscopically using statistically stored dislocations in commercial purity aluminum. Metallurgical and Materials Transactions A, 37/1. (2006) 19–25. https://doi.org/10.1007/s11661-006-0148-1 Search in Google Scholar

[6] Kubin L. P., Estrin Y.: Evolution of dislocation densities and the critical conditions for the Portevin- Le Châtelier effect. Acta metallurgica et materialia, 38/5. (1990) 697–708. https://doi.org/10.1016/0956-7151(90)90021-8 Search in Google Scholar

[7] Csanádi T., Chinh N. Q., Gubicza J., Langdon T. G.: Plastic behavior of fcc metals over a wide range of strain: Macroscopic and microscopic descriptions and their relationship. Acta Materialia, 59/6. (2011) 2385–2391. https://doi.org/10.1016/j.actamat.2010.12.034 Search in Google Scholar

[8] Csanádi T., Chinh N. Q., Gubicza J., Vörös G., Langdon T. G.: Characterization of stress–strain relationships in Al over a wide range of testing temperatures. International Journal of Plasticity, 54. (2014) 178–192. https://doi.org/10.1016/j.ijplas.2013.08.014 Search in Google Scholar

[9] Nix W. D., Gao H.: Indentation size effects in crystalline materials: A law for strain gradient plasticity. Journal of the Mechanics and Physics of Solids, 46/3. (1998) 411–425. https://doi.org/10.1016/S0022-5096(97)00086-0 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo