[
[1] R. G. Newell, D. Raimi, G. Aldana: Global Energy Outlook 2019: The Next Generation of Energy. Report 19-06/2019. http://www.econ2.jhu.edu/courses/101/GlobalEnergyOutlook2019.pdf, 2020.10.05
]Search in Google Scholar
[
[2] A. Zandian, M. Ashjaee: The thermal efficiency improvement of a steam Rankine cycle by innovative design of a hybrid cooling tower and a solar chimney concept. Renewable Energy, 51. (2013) 465–473. https://doi.org/10.1016/j.renene.2012.09.05110.1016/j.renene.2012.09.051
]Search in Google Scholar
[
[3] C. Geng, Y. Shao, W. Zhong, X. Liu: Thermodynamic Analysis of Supercritical CO2 Power Cycle with Fluidized Bed Coal Combustion. Coal and Biomass Combustion, 2018. Article ID 6963292, https://doi.org/10.1155/2018/696329210.1155/2018/6963292
]Search in Google Scholar
[
[4] K. Meah, S. Ula: Comparative Evaluation of HVDC and HVAC Transmission Systems. IEEE Power Engineering Society General Meeting, 2007. 1–5, https://doi.org/10.1109/PES.2007.38599310.1109/PES.2007.385993
]Search in Google Scholar
[
[5] Szabó A.: Gondolatok egy ígéretes lágymágneses anyagról. Magyar Acél, 2017. ősz, 41–43. http://www.mvae.hu/kiadvanyok/mvae-szeptember-web.pdf
]Search in Google Scholar
[
[6] T. Conboy, S. Wright: Experimental Investigation of the S-CO2 Condensing Cycle. Supercritical CO2 Power Cycle Symposium, May 24–25, 2011, Boulder, CO, SAND2011-2690C
]Search in Google Scholar
[
[7] Yoonhan Ahn, et. al.: Review of supercritical CO2 power cycle technology and current status of research and development. Nuclear Engineering and Technology, 47/6. (2015) 647–661. https://doi.org/10.1016/j.net.2015.06.00910.1016/j.net.2015.06.009
]Search in Google Scholar
[
[8] S. Hameer, J. L. van Niekerk: A review of large scale electrical energy storage. International Journal of Energy Research, 39/9. (2015) 1179–1195. https://doi.org/10.1002/er.329410.1002/er.3294
]Search in Google Scholar
[
[9] Y. Sun et al.: Coupling supercritical carbon dioxide Brayton cycle with spray-assisted dry cooling technology for concentrated solar power. Applied Energy, 251. (2019) https://doi.org/10.1016/j.apenergy.2019.11332810.1016/j.apenergy.2019.113328
]Search in Google Scholar
[
[10] M. Mohagheghi, J. Kapat: Thermodynamic optimization of recuperated sCO2 Brayton cycles for waste-heat recovery applications. The 4th International Symposium – Supercritical CO2 Power Cycles 2014, Pittsburgh, USA.10.1115/GT2013-94799
]Search in Google Scholar
[
[11] K. Brun, P. Friedman, R. Dennis: Fundamentals and applications of supercritical carbon dioxide (sCO2) based power cycles. Woodhead Publishing, 2017.
]Search in Google Scholar
[
[12] V. Dostal, P. Hejzlar, M.J. Driscoll: The Supercritical Carbon Dioxide Power Cycle: Comparison to Other Advanced Power Cycles. Nuclear Technology, 154/3. (2006) 283–301. https://doi.org/10.13182/NT06-A373410.13182/NT06-A3734
]Search in Google Scholar
[
[13] Ideen Sadrehaghighi: Multiphase Flow. CFD Open Series, Report number: 2.11, aug. 2020. https://www.researchgate.net/profile/Ideen-Sadrehaghighi/publication/320107451_Multiphase_Flow/links/5f4741df458515a88b706909/Multiphase-Flow.pdf
]Search in Google Scholar
[
[14] S. A. Wright et. al.: Modeling and Experimental Results for Condensing Supercritical CO2 Power Cycles. Sandia Report. SAND2010-8840, 2011.10.2172/1030354
]Search in Google Scholar
[
[15] S. A. Wright, et. al.: Operation and Analysis of a Supercritical CO2 Brayton Cycle. Sandia Report. SAND2010-0171, 2010.10.2172/984129
]Search in Google Scholar
[
[16] Q. Zhu: Innovative power generation systems using supercritical CO2 cycles. Clean Energy, 1/1. (2017) 68–79. https://doi.org/10.1093/ce/zkx00310.1093/ce/zkx003
]Search in Google Scholar
[
[17] Z. M. Fairuza, I. Jahn: The influence of real gas effects on the performance of supercritical CO2 dry gas seals. Tribology International, 102. (2016) 333–347.
]Search in Google Scholar
[
[18] S. A. Wright, M. Anderson: Supercritical CO2 cycle for advanced NPPs. Workshop on New Cross-cutting Technologies for Nuclear Power Plants, 2017. https://energy.mit.edu/wp-content/uploads/2017/02/2-5.-U-Wisc-SCT-MIT_slides_V4b-min.pdf
]Search in Google Scholar
[
[19] G. Stefan et. al.: Evaluation of sCO2 power cycles for direct and waste heat applications. 2nd European sCO2 Conference 2018, https://doi.org/10.17185/duepublico/46074
]Search in Google Scholar
[
[20] J. M. Silveyra et. al.: High speed electric motors based on high performance novel soft magnets. Journal of Applied Physics 115/17. 17A319 (2014), https://doi.org/10.1063/1.486424710.1063/1.4864247
]Search in Google Scholar
[
[21] S. Duniam, F. Sabri, K. Hooman: A novel hybrid geo-solar thermal design for power generation in Australia. Journal of the Taiwan Institute of Chemical Engineers, 27 March 2021. https://doi.org/10.1016/j.jtice.2021.03.02310.1016/j.jtice.2021.03.023
]Search in Google Scholar
[
[22] Du Ruoyang, Robertson P.: Dynamic Jiles-Atherton Model for Determining the Magnetic Power Loss at High Frequency in Permanent Magnet Machines. IEEE Transactions on Magnetics, 51/6. (2015) https://doi.org/10.1109/TMAG.2014.238259410.1109/TMAG.2014.2382594
]Search in Google Scholar
[
[23] Szabó A., Sánta R., Lovas A., Novák L.: A FINEMET- ötvözet tulajdonságváltozásának vizsgálata hagyományos, impulzusos és mechanikai feszültség alatt végzett hőkezelést követően. Acta Materialia Transylvanica, 3/1. (2020) 43–49., https://doi.org/10.33923/amt-2020-01-0810.33923/amt-2020-01-08
]Search in Google Scholar
[
[24] A. Szabó, A. Nagy, G. Kozsely: Laser cutting technology development for Fe based metallic glass. 2019 IEEE 17th International Symposium on Intelligent Systems and Informatics (SISY ). https://doi.org/10.1109/SISY47553.2019.911160410.1109/SISY47553.2019.9111604
]Search in Google Scholar
[
[25] Berta I., Kádár I., Szabó L.: Váltakozó áramú rendszerek. 2012. https://regi.tankonyvtar.hu/hu/tartalom/tamop425/0048_VIVEM111/index.html (2020. 11. 10.)
]Search in Google Scholar
[
[26] M. Persichilli et al.: Supercritical CO2 Power Cycle Developments and Commercialization: Why sCO2 can Displace Steam. Presented at Power-Gen India & Central Asia 2012, New Delhi, India.
]Search in Google Scholar