1. bookVolume 4 (2021): Issue 1 (April 2021)
Journal Details
License
Format
Journal
First Published
30 Jan 2019
Publication timeframe
2 times per year
Languages
English
access type Open Access

Future Structural Materials of High Speed Generators Used in Supercritical CO2 Based Power Plant Applications

Published Online: 08 Jul 2021
Page range: 38 - 44
Journal Details
License
Format
Journal
First Published
30 Jan 2019
Publication timeframe
2 times per year
Languages
English
Abstract

The aim of this paper is to present the applicability of one of the promising achievements in the fields of materials science and mechanical engineering, which provides a solution to one of the problems of the new generation power plants. One promising area of research aimed at increasing the efficiency of electricity generation is discussed in this article on the characteristics of super-critical carbon dioxide power plant cycles and the properties of high-speed generators that can be used in such power plants. The applicability of amorphous materials in the construction of high-speed electrical machines can solve the efficiency problem of such machines, enabling its use in new generation power plants.

Keywords

[1] R. G. Newell, D. Raimi, G. Aldana: Global Energy Outlook 2019: The Next Generation of Energy. Report 19-06/2019. http://www.econ2.jhu.edu/courses/101/GlobalEnergyOutlook2019.pdf, 2020.10.05 Search in Google Scholar

[2] A. Zandian, M. Ashjaee: The thermal efficiency improvement of a steam Rankine cycle by innovative design of a hybrid cooling tower and a solar chimney concept. Renewable Energy, 51. (2013) 465–473. https://doi.org/10.1016/j.renene.2012.09.051 Search in Google Scholar

[3] C. Geng, Y. Shao, W. Zhong, X. Liu: Thermodynamic Analysis of Supercritical CO2 Power Cycle with Fluidized Bed Coal Combustion. Coal and Biomass Combustion, 2018. Article ID 6963292, https://doi.org/10.1155/2018/6963292 Search in Google Scholar

[4] K. Meah, S. Ula: Comparative Evaluation of HVDC and HVAC Transmission Systems. IEEE Power Engineering Society General Meeting, 2007. 1–5, https://doi.org/10.1109/PES.2007.385993 Search in Google Scholar

[5] Szabó A.: Gondolatok egy ígéretes lágymágneses anyagról. Magyar Acél, 2017. ősz, 41–43. http://www.mvae.hu/kiadvanyok/mvae-szeptember-web.pdf Search in Google Scholar

[6] T. Conboy, S. Wright: Experimental Investigation of the S-CO2 Condensing Cycle. Supercritical CO2 Power Cycle Symposium, May 24–25, 2011, Boulder, CO, SAND2011-2690C Search in Google Scholar

[7] Yoonhan Ahn, et. al.: Review of supercritical CO2 power cycle technology and current status of research and development. Nuclear Engineering and Technology, 47/6. (2015) 647–661. https://doi.org/10.1016/j.net.2015.06.009 Search in Google Scholar

[8] S. Hameer, J. L. van Niekerk: A review of large scale electrical energy storage. International Journal of Energy Research, 39/9. (2015) 1179–1195. https://doi.org/10.1002/er.3294 Search in Google Scholar

[9] Y. Sun et al.: Coupling supercritical carbon dioxide Brayton cycle with spray-assisted dry cooling technology for concentrated solar power. Applied Energy, 251. (2019) https://doi.org/10.1016/j.apenergy.2019.113328 Search in Google Scholar

[10] M. Mohagheghi, J. Kapat: Thermodynamic optimization of recuperated sCO2 Brayton cycles for waste-heat recovery applications. The 4th International Symposium – Supercritical CO2 Power Cycles 2014, Pittsburgh, USA. Search in Google Scholar

[11] K. Brun, P. Friedman, R. Dennis: Fundamentals and applications of supercritical carbon dioxide (sCO2) based power cycles. Woodhead Publishing, 2017. Search in Google Scholar

[12] V. Dostal, P. Hejzlar, M.J. Driscoll: The Supercritical Carbon Dioxide Power Cycle: Comparison to Other Advanced Power Cycles. Nuclear Technology, 154/3. (2006) 283–301. https://doi.org/10.13182/NT06-A3734 Search in Google Scholar

[13] Ideen Sadrehaghighi: Multiphase Flow. CFD Open Series, Report number: 2.11, aug. 2020. https://www.researchgate.net/profile/Ideen-Sadrehaghighi/publication/320107451_Multiphase_Flow/links/5f4741df458515a88b706909/Multiphase-Flow.pdf Search in Google Scholar

[14] S. A. Wright et. al.: Modeling and Experimental Results for Condensing Supercritical CO2 Power Cycles. Sandia Report. SAND2010-8840, 2011. Search in Google Scholar

[15] S. A. Wright, et. al.: Operation and Analysis of a Supercritical CO2 Brayton Cycle. Sandia Report. SAND2010-0171, 2010. Search in Google Scholar

[16] Q. Zhu: Innovative power generation systems using supercritical CO2 cycles. Clean Energy, 1/1. (2017) 68–79. https://doi.org/10.1093/ce/zkx003 Search in Google Scholar

[17] Z. M. Fairuza, I. Jahn: The influence of real gas effects on the performance of supercritical CO2 dry gas seals. Tribology International, 102. (2016) 333–347. Search in Google Scholar

[18] S. A. Wright, M. Anderson: Supercritical CO2 cycle for advanced NPPs. Workshop on New Cross-cutting Technologies for Nuclear Power Plants, 2017. https://energy.mit.edu/wp-content/uploads/2017/02/2-5.-U-Wisc-SCT-MIT_slides_V4b-min.pdf Search in Google Scholar

[19] G. Stefan et. al.: Evaluation of sCO2 power cycles for direct and waste heat applications. 2nd European sCO2 Conference 2018, https://doi.org/10.17185/duepublico/46074 Search in Google Scholar

[20] J. M. Silveyra et. al.: High speed electric motors based on high performance novel soft magnets. Journal of Applied Physics 115/17. 17A319 (2014), https://doi.org/10.1063/1.4864247 Search in Google Scholar

[21] S. Duniam, F. Sabri, K. Hooman: A novel hybrid geo-solar thermal design for power generation in Australia. Journal of the Taiwan Institute of Chemical Engineers, 27 March 2021. https://doi.org/10.1016/j.jtice.2021.03.023 Search in Google Scholar

[22] Du Ruoyang, Robertson P.: Dynamic Jiles-Atherton Model for Determining the Magnetic Power Loss at High Frequency in Permanent Magnet Machines. IEEE Transactions on Magnetics, 51/6. (2015) https://doi.org/10.1109/TMAG.2014.2382594 Search in Google Scholar

[23] Szabó A., Sánta R., Lovas A., Novák L.: A FINEMET- ötvözet tulajdonságváltozásának vizsgálata hagyományos, impulzusos és mechanikai feszültség alatt végzett hőkezelést követően. Acta Materialia Transylvanica, 3/1. (2020) 43–49., https://doi.org/10.33923/amt-2020-01-08 Search in Google Scholar

[24] A. Szabó, A. Nagy, G. Kozsely: Laser cutting technology development for Fe based metallic glass. 2019 IEEE 17th International Symposium on Intelligent Systems and Informatics (SISY ). https://doi.org/10.1109/SISY47553.2019.9111604 Search in Google Scholar

[25] Berta I., Kádár I., Szabó L.: Váltakozó áramú rendszerek. 2012. https://regi.tankonyvtar.hu/hu/tartalom/tamop425/0048_VIVEM111/index.html (2020. 11. 10.) Search in Google Scholar

[26] M. Persichilli et al.: Supercritical CO2 Power Cycle Developments and Commercialization: Why sCO2 can Displace Steam. Presented at Power-Gen India & Central Asia 2012, New Delhi, India. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo