1. bookVolume 3 (2020): Issue 2 (October 2020)
Journal Details
License
Format
Journal
eISSN
2601-8799
First Published
30 Jan 2019
Publication timeframe
2 times per year
Languages
English
Open Access

Experiments with Femtosecond Laser on Monocrystalline Silicon

Published Online: 11 Nov 2020
Volume & Issue: Volume 3 (2020) - Issue 2 (October 2020)
Page range: 86 - 89
Journal Details
License
Format
Journal
eISSN
2601-8799
First Published
30 Jan 2019
Publication timeframe
2 times per year
Languages
English

[1] Mangirdas M., Albertas Ž., Satoshi H., Yoshio H., Vygantas M., Ričardas B., Saulius J.: Ultrafast laser processing of materials: from science to industry. Light: Science & Applications, 5. (2016) 16–133.Search in Google Scholar

[2] Mathis A., Courvoisiera F., Froehly L., Furfaro L., Jacquot M., Lacourt P. A., Dudley J. M.: Micromachining along a curve. Femtosecond laser micromachining of curved profiles in diamond and silicon using accelerating beams. Applied Physics Letters, 101. (2012) 71–110. https://doi.org/10.1063/1.474592510.1063/1.4745925Search in Google Scholar

[3] Evgeny L.: Mechanisms of femtosecond LIPSS formation induced by periodic surface temperature modulation. Applied Surface Science, 374. (2016) 30.10.1016/j.apsusc.2015.09.091Search in Google Scholar

[4] Kaiwen D., Cong W., Yu Z., Zheng X., Zhi L., Shu M., Biwei W.: One-step fabrication of multifunctional fusiform hierarchical micro/nanostructures on copper by femtosecond laser. Surface and Coatings Technology, 367. (2019) 244–251. https://doi.org/10.1016/j.surfcoat.2019.04.00510.1016/j.surfcoat.2019.04.005Search in Google Scholar

[5] Rafael R. G., Eric M.: Femtosecond laser micromachining in transparent materials. Nature Photonics, 2. (2008) 219–225.Search in Google Scholar

[6] Andrius M., Saulius J., Mitsuru W., Masafumi M., Shigeki M., Hiroaki M., Junji N.: Femtosecond laser-assisted three-dimensional microfabrication in silica. Optics Letters, 26/5. (2001) 277–279. https://doi.org/10.1364/OL.26.00027710.1364/OL.26.000277Search in Google Scholar

[7] Akarapu S., Zbib H. M., Bahr D. F.: Analysis of heterogeneous deformation and dislocation dynamics in single crystal micropillars under compression. International Journal of Plasticity, 26/2. (2010) 239–257. https://doi.org/10.1016/j.ijplas.2009.06.00510.1016/j.ijplas.2009.06.005Search in Google Scholar

[8] Aifantis E. C.: Gradient Deformation Models at Nano, Micro, and Macro Scales. Journal of Engineering Materials and Technology, 121/2. (1999) 189–202.Search in Google Scholar

[9] Eduardo B.: Interpretation of the size effects in micropillar compression by a strain gradient crystal plasticity theory. International Journal of Plasticity, 116. (2019) 31. https://doi.org/10.1016/j.ijplas.2019.01.01110.1016/j.ijplas.2019.01.011Search in Google Scholar

[10] Tanga H., Schwarzb K. W., Espinosaa H. D.: Dislocation escape-related size effects in single-crystal micropillars under uniaxial compression. Acta Materialia, 55/5. (2007) 1607–1616. https://doi.org/10.1016/j.actamat.2006.10.02110.1016/j.actamat.2006.10.021Search in Google Scholar

[11] William D., Nix Seok W. L.: Micro-pillar plasticity controlled by dislocation nucleation at surfaces. Philosophical Magazine, 91/7–9. (2011) 1084–1096. https://doi.org/10.1080/14786435.2010.50214110.1080/14786435.2010.502141Search in Google Scholar

[12] Jijo E. G., Unnikrishnan V. K., Deepak M., Santhosh C., Sajan D. G.: Flexible Superhydrophobic SERS Substrates Fabricated by In Situ Reduction of Ag on Femtosecond Laser-Written Hierarchical Surfaces. Sensors and Actuators B, 272/1. (2018) 485–493. https://doi.org/10.1016/j.snb.2018.05.15510.1016/j.snb.2018.05.155Search in Google Scholar

[13] Steven E. J. B., Narayana M. S. S.: Surface-Enhanced Raman Spectroscopy (SERS) for Sub-Micromolar Detection of DNA/RNA Mononucleotides. Journal of the American Chemical Society, 128/49. (2006) 15580–15581. https://doi.org/10.1021/ja066263w10.1021/ja066263w17147354Search in Google Scholar

[14] Ximei Q., Jun L., Shuming N.: Stimuli-Responsive SERS Nanoparticles. Conformational Control of Plasmonic Coupling and Surface Raman Enhancement. Journal of the American Chemical Society, 131/22. (2009) 7540–7541. https://doi.org/10.1021/ja902226z10.1021/ja902226z270349719453179Search in Google Scholar

[15] Zhu Z., Yan Z., Zhan P., Wang Z.: Large-area surface-enhanced Raman scattering-active substrates fabricated by femtosecond laser ablation. Science China Physics, Mechanics and Astronomy, 56. (2013) 1806–1809.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo