1. bookVolume 3 (2020): Issue 2 (October 2020)
Journal Details
License
Format
Journal
First Published
30 Jan 2019
Publication timeframe
2 times per year
Languages
English
access type Open Access

Experiments with Femtosecond Laser on Monocrystalline Silicon

Published Online: 11 Nov 2020
Page range: 86 - 89
Journal Details
License
Format
Journal
First Published
30 Jan 2019
Publication timeframe
2 times per year
Languages
English
Abstract

Experiments were performed with femtosecond laser on monocrystalline silicon for different application fields. The small focal spot diameter, the ultra-short pulse length, and the high energy density opens new ways in material processing; the treated material will have smaller heat affected zone (HAZ), and allow more precise, higher quality material processing. Micropillars and LIPSS structures were prepared on monocrystalline silicon in our study.

Keywords

[1] Mangirdas M., Albertas Ž., Satoshi H., Yoshio H., Vygantas M., Ričardas B., Saulius J.: Ultrafast laser processing of materials: from science to industry. Light: Science & Applications, 5. (2016) 16–133.Search in Google Scholar

[2] Mathis A., Courvoisiera F., Froehly L., Furfaro L., Jacquot M., Lacourt P. A., Dudley J. M.: Micromachining along a curve. Femtosecond laser micromachining of curved profiles in diamond and silicon using accelerating beams. Applied Physics Letters, 101. (2012) 71–110. https://doi.org/10.1063/1.4745925Search in Google Scholar

[3] Evgeny L.: Mechanisms of femtosecond LIPSS formation induced by periodic surface temperature modulation. Applied Surface Science, 374. (2016) 30.Search in Google Scholar

[4] Kaiwen D., Cong W., Yu Z., Zheng X., Zhi L., Shu M., Biwei W.: One-step fabrication of multifunctional fusiform hierarchical micro/nanostructures on copper by femtosecond laser. Surface and Coatings Technology, 367. (2019) 244–251. https://doi.org/10.1016/j.surfcoat.2019.04.005Search in Google Scholar

[5] Rafael R. G., Eric M.: Femtosecond laser micromachining in transparent materials. Nature Photonics, 2. (2008) 219–225.Search in Google Scholar

[6] Andrius M., Saulius J., Mitsuru W., Masafumi M., Shigeki M., Hiroaki M., Junji N.: Femtosecond laser-assisted three-dimensional microfabrication in silica. Optics Letters, 26/5. (2001) 277–279. https://doi.org/10.1364/OL.26.000277Search in Google Scholar

[7] Akarapu S., Zbib H. M., Bahr D. F.: Analysis of heterogeneous deformation and dislocation dynamics in single crystal micropillars under compression. International Journal of Plasticity, 26/2. (2010) 239–257. https://doi.org/10.1016/j.ijplas.2009.06.005Search in Google Scholar

[8] Aifantis E. C.: Gradient Deformation Models at Nano, Micro, and Macro Scales. Journal of Engineering Materials and Technology, 121/2. (1999) 189–202.Search in Google Scholar

[9] Eduardo B.: Interpretation of the size effects in micropillar compression by a strain gradient crystal plasticity theory. International Journal of Plasticity, 116. (2019) 31. https://doi.org/10.1016/j.ijplas.2019.01.011Search in Google Scholar

[10] Tanga H., Schwarzb K. W., Espinosaa H. D.: Dislocation escape-related size effects in single-crystal micropillars under uniaxial compression. Acta Materialia, 55/5. (2007) 1607–1616. https://doi.org/10.1016/j.actamat.2006.10.021Search in Google Scholar

[11] William D., Nix Seok W. L.: Micro-pillar plasticity controlled by dislocation nucleation at surfaces. Philosophical Magazine, 91/7–9. (2011) 1084–1096. https://doi.org/10.1080/14786435.2010.502141Search in Google Scholar

[12] Jijo E. G., Unnikrishnan V. K., Deepak M., Santhosh C., Sajan D. G.: Flexible Superhydrophobic SERS Substrates Fabricated by In Situ Reduction of Ag on Femtosecond Laser-Written Hierarchical Surfaces. Sensors and Actuators B, 272/1. (2018) 485–493. https://doi.org/10.1016/j.snb.2018.05.155Search in Google Scholar

[13] Steven E. J. B., Narayana M. S. S.: Surface-Enhanced Raman Spectroscopy (SERS) for Sub-Micromolar Detection of DNA/RNA Mononucleotides. Journal of the American Chemical Society, 128/49. (2006) 15580–15581. https://doi.org/10.1021/ja066263wSearch in Google Scholar

[14] Ximei Q., Jun L., Shuming N.: Stimuli-Responsive SERS Nanoparticles. Conformational Control of Plasmonic Coupling and Surface Raman Enhancement. Journal of the American Chemical Society, 131/22. (2009) 7540–7541. https://doi.org/10.1021/ja902226zSearch in Google Scholar

[15] Zhu Z., Yan Z., Zhan P., Wang Z.: Large-area surface-enhanced Raman scattering-active substrates fabricated by femtosecond laser ablation. Science China Physics, Mechanics and Astronomy, 56. (2013) 1806–1809.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo