[
[1] Swamini A. Chopra, V.G. Sargade: Metallurgy behind the Cryogenic Treatment of Cutting Tools: An Overview. 4th International Conference on Materials Processing and Characterization. Materials Today: Proceedings, 2/4−5. (2015) 1814−1824. https://doi.org/10.1016/j.matpr.2015.07.119
]Search in Google Scholar
[
[2] Daniel Tobola, Witold Brostow, Kazimierz Czechowsky, Piotr Rusek: Improvement of Wear Resistance of Some Cold Working Tool Steels. Wear, 382−383 (2017) 29−39. https://doi.org/10.1016/j.wear.2017.03.023
]Search in Google Scholar
[
[3] A. Oppenkowski, S. Weber, W. Theisen: Evaluation of Factors Influencing Deep Cryogenic Treatment That Affect the Properties of Tool Steels. Journal of Materials Processing Technology, 210/14. (2010) 1949−1955. https://doi.org/10.1016/j.jmatprotec.2010.07.007
]Search in Google Scholar
[
[4] Tóth L., Fábián E. R., Huszák Cs.: Heat Treatment Effects on Properties of K110 Böhler Steel. Abstracts Book of 10th International Engineering Symposium at Bánki, (2018) 85.
]Search in Google Scholar
[
[5] Martin Kurik, Jakub Lacza, Tomas Vlach, Jana Sobotova: Study of the Properties and Structure of Selected Tool Steels for Cold Work Depending ont he Parameters of Heat Treatment. Materials and Technology, 51/4. (2017) 585−589. https://doi.org/10.17222/mit.2016.120
]Search in Google Scholar
[
[6] Yaowen Xu, Fei Chen, Zhen Li, Gengwei Yang, Siquian Bao, Gang Zhao, Ximping Mao, Jun Shi.: Kinetics of Carbon Partitioning of Q&P Steel: Considering the Morphology of Retained Austenite. MDPI, Metals, 12/2. (2022) 344. https://doi.org/10.3390/met12020344
]Search in Google Scholar
[
[7] Muneo Yaso, Shuhei Hayashy, Shigekazu Morito, Takuya Ohba.: Characteristics of Retained Austenite in Quenched High C-High Cr Alloy Steels. Materials Transactions, 50/2. (2009) 275−279. https://doi.org/10.2320/matertrans.MRA2008161
]Search in Google Scholar
[
[8] M. Perez, C. Rodriguez, F.J. Belzunce.: The Use of Cryogenic Thermal Treatments to Increase the Fracture Toughness of a Hot Work Tool Steel Used to Make Forging Dies. Procedia Materials Science, 3. (2014) 604−609. https://doi.org/10.1016/j.mspro.2014.06.100
]Search in Google Scholar
[
[9] Gavriljuk V. G, Theisen W., Sirosh V.V.: Low-temperature Martensitic Transformation in Tool Steels in Relation to Their Deep Cryogenic Treatment. Acta Materiala, 61/5. (2013) 1705−1715. https://doi.org/10.1016/j.actamat.2012.11.045
]Search in Google Scholar
[
[10] Das D., Dutta A.K., Toppo V., Ray K.K.: Effect of Deep Cryogenic Treatment on the Carbide Precision and Tribological Behaviour of D2 Steel, Materials Manufacturing Processes, 22/4. (2007), 474−480. https://doi.org/10.1080/10426910701235934
]Search in Google Scholar
[
[11] Molinari A., Pellizzari M., Gialanella S., Straffelini G., Stiasny K. H.: Effect of Deep Cryogenic Treatment on the Mechanical Properties of Tool Steels. Journal of Materials Processing Technology, 118/1−3. (2001) 350−355. https://doi.org/10.1016/s0924-0136(01)00973-6
]Search in Google Scholar
[
[12] Das D, Sarkar R., Dutta A.K., Ray K.K.: Influence of Sub-zero Treatments on Fracture Toughness of AISI D2 Steel. Materials Science and Engineering: A, 528/2. (2010). 589−603. https://doi.org/10.1016/j.msea.2010.09.057
]Search in Google Scholar
[
[13] Patricia Jovicevic-Klug, Matic Jovicevic-Klug, Tina Sever, Darja Feizpour, Bojan Podgornic: Impact of Steel Type, Composition and Heat Treatment Parameters on Effectiveness of Deep Cryogenic Treatment. Journal of Materials Research and Technology, 14/5. (2021) 1007−1020. https://doi.org/10.1016/j.jmrt.2021.07.022
]Search in Google Scholar
[
[14] D. Senthilkumar: Effect of Deep Cryogenic Treatment on Residual Stress and Mechanical Behaviour of Induction Hardened En 8 Steel. Advances in Materials and Processing Technologies, 2/4. (2016) 427−436. https://doi.org/10.1080/2374068X.2016.1244326
]Search in Google Scholar