1. bookVolume 12 (2012): Issue 3 (July 2012)
Journal Details
License
Format
Journal
eISSN
2300-8733
ISSN
1642-3402
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Effect of Breed and Age on Histopathological Changes in Pig M. Semimembranosus

Published Online: 24 Jul 2012
Volume & Issue: Volume 12 (2012) - Issue 3 (July 2012)
Page range: 311 - 321
Journal Details
License
Format
Journal
eISSN
2300-8733
ISSN
1642-3402
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English
Effect of Breed and Age on Histopathological Changes in Pig <italic>M. Semimembranosus</italic>

The aim of the study was to determine the type and extent of histopathological changes in m. semimembranosus of Polish Landrace (PL), Polish Large White (PLW), Duroc, Pietrain, and Puławska pigs at 60, 90, 120, 150, 180 and 210 days of age. Changes in fibre size (atrophy, hypertrophy - giant fibres), changes in fibre shape (angular fibres), degenerative lesions (necrosis with phagocytosis) and connective tissue hypertrophy were evaluated. The presence of giant fibres was the only histopathological change observed in all age groups of PL, PLW, Duroc and Pietrain pigs, with the percentage of pigs with this type of pathology and the frequency of giant, atrophic and angular fibres increasing significantly with age. In Puławska pigs, giant fibres were only found in the oldest pigs aged 210 days. In these animals, giant fibres as well as atrophic fibres (at 180 and 210 days of age) and angular fibres (at 120, 150, 180 and 210 days of age) occurred in the smallest number of animals and were least extensive. Meanwhile, Pietrain pigs were characterized by a greater number of animals, a significantly greater proportion of giant fibres in all analysed age groups, and a greater proportion of atrophic fibres at 180 and 210 days of age compared to the other pig breeds under analysis. For connective tissue hypertrophy and necrosis with phagocytosis, the changes were not extensive. It is concluded that both the advancing age of the animals and selection of the pigs for increased leanness significantly increases the incidence of histopathological changes in muscle tissue, which may directly translate into pork quality.

Keywords

Bergmann V. (1979). Changes of cardiac and skeletal muscle in pigs following transport stress. Exp. Pathol., 17: 243-248.Search in Google Scholar

Bogucka J., Walasik K., Elminowska-Wenda G., Kruczyńska M. (2006). Pathological changes in the structure of semimembranosus muscle from pigs included in the Stamboek and Torhyb breeding programmes. Anim. Sci. Pap. Rep., Suppl., 2, 24: 45-52.Search in Google Scholar

Brym P., Kamiński S., Rusc A., Wójcik E. (2002). Allele frequency in ryanodine receptor (RYR1) locus in boars of different breeds. Ann. Anim. Sci., Suppl., 2: 33-35.Search in Google Scholar

Dubowitz V., Sewery C. A. (2007). Muscle Biopsy: A Practical Approach. 3rd edition, Saunders Elsevier.Search in Google Scholar

Fazarinc G., Čandek-Potokar M., Uršič M., Vrecl M., Pogačnik A. (2002). Giant muscle fibres in pigs with different RYR 1 genotype. Anat. Histol. Embryol., 31: 367-371.Search in Google Scholar

Fiedler I., Ender K., Wicke M., Maak S., von Lergenken G., Meyer W. (1999). Structural and functional characteristics of muscle fibres in pigs with different malignant hyperthermia susceptibility (MHS) and different meat quality. Meat Sci., 53: 9-15.Search in Google Scholar

Hausmanowa-Petrusewicz I. (1993). Muscle diseases (in Polish). PZWL, Warszawa.Search in Google Scholar

Kłosowska D., Kłosowski B., Nowak B. (1995). Histopathological changes in longissimus muscle of Pietrain pigs and its crosses. Proceedings of the 2nd Dummerstorf Muscle Workshop on Muscle Growth and Meat Quality, Rostock, 17-19 May 1995, pp. 84-91.Search in Google Scholar

Paciello O., Papparella S. (2009). Histochemical and immunohistochemical approach to comparative neuromuscular diseases. Folia Histochem. Cytobiol., 47: 143-152.Search in Google Scholar

Pospiech E., Borzuta K., Łyczyński A., Plókarz W. (1998). Meat defects and their economic importance. Pol. J. Food Nutr. Sci., 7/48, 4: 7-20.Search in Google Scholar

Rahelič S., Pauc S. (1980). Fibre types in longissimus dorsi from wild and highly selected pig breeds. Meat Sci., 50, p. 431.Search in Google Scholar

Schmitt O., Dumont B. L. (1981). Detection of giant fibres and interpretation of their presence in pig muscle. In Proceedings of the Symposium Agricultural Food Research Society, As, Norway, pp. 53-58.Search in Google Scholar

Schubert-Schoppmeyer A., Fiedler I., Nürnberg G., Jonas L., Ender K., Maak S., Rehfeldt C. (2008). Simulation of giant fibre development in biopsy samples from pig longissimus muscle. Meat Sci., 80: 1297-1303.Search in Google Scholar

Sobczak M., Lachowicz K., Żochowska-Kujawska J. (2010). The influence of giant fibres on utility for production of massaged products of porcine muscle longissimus dorsi. Meat Sci., 84: 638-644.Search in Google Scholar

Solomon M. B., Eastridge J. S. (1987). Occurrence of giant fibres in muscles from wild pigs native to the United Sates. Meat Sci., 20: 75-81.Search in Google Scholar

Solomon M. B., West R. L. (1985). Profile of fibre types in muscles from wild pigs native to the United States. Meat Sci. 13: 247-254.Search in Google Scholar

Sośnicki A. (1987). Histopathological observation of stress myopathy in M. longissimus in the pig and relationships with meat quality, fattening and slaughter traits. J. Anim. Sci., 65: 584-596.Search in Google Scholar

Thuilliez C., Dorso L., Howroyd P., Gould S., Chanut F., Burnett R. (2009). Histopathological lesions following intramuscular administration of saline in laboratory rodents and rabbits. Exp. Toxicol. Pathol., 61: 13-21.Search in Google Scholar

Velotto S., Varricchio E., DiPrisco M. R., Stasi T., Crasto A. (2007). Skeletal myocyte types and vascularity in the Black Sicilian pig. Acta Vet. Brno., 76: 163-170.Search in Google Scholar

Walasik K., Kłosowska D., Grześkowiak E. (2000). Pathological changes in musculus longissimus lumborum of hybrid pigs with Hampshire genes (in Polish). Rocz. Nauk. Zoot., Suppl., 6: 233-237.Search in Google Scholar

Wegner J., Fiedler I., Kłosowska D., Kłosowski B., Ziegan B. (1993). Veranderungen der Muskelfasertypenverteilung im M. longissimus dorsi von Ebern während des Wachstums dargestellt mit verschiedenen histochemischen Methoden. Anat. Histol. Embryol., 22: 355-359.Search in Google Scholar

Wimmers K., Fiedler I., Hardge T., Murani E., Schellander K., Ponsuksili S. (2006). QTL for microstructural and biophysical muscle properties and body composition in pigs. BMC Genetics, 7, p. 15.10.1186/1471-2156-7-15145698916526961Search in Google Scholar

Wojtysiak D., Migdał W. (2006). Effect of body weight on histopathological changes in m. longissimus lumborum of fatteners. Anim. Sci., Suppl., 2: 451-455.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo