1. bookVolume 50 (2019): Issue 1 (March 2019)
Journal Details
License
Format
Journal
eISSN
1805-9430
ISSN
1211-3174
First Published
23 Jun 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Effects of Two Cadmium Hyperaccumulating Plants (N. Caerulescens And A. Halleri) in Feed on Tissue Burden in Laboratory Rats

Published Online: 06 Apr 2019
Page range: 46 - 50
Received: 13 Feb 2018
Accepted: 03 May 2018
Journal Details
License
Format
Journal
eISSN
1805-9430
ISSN
1211-3174
First Published
23 Jun 2011
Publication timeframe
4 times per year
Languages
English
Abstract

The aim of this work was to determine how two cadmium (Cd) hyperaccumulating plants in feed affect a consumer organism (Rattus norvegicus var. alba). Using inductively coupled plasma optical emission spectrometry (ICP-OES), Cd concentrations were analyzed in Wistar rat (Rattus norvegicus var. alba) tissues. Rats were fed the Cd and Zn hyperaccumulating plants Noccaea caerulescens or Arabidopsis halleri. Rats given Arabidopsis halleri took in 4 times as much Cd as did rats fed Noccaea caerulescens. However, the muscle, intestinal, kidney, spleen, testicular, bone and liver tissues of rats fed A.halleri had 7.3, 5.6, 5.5, 3.5, 3.1, 2.5 and 2.3 times higher Cd concentrations, respectively, than did tissues of rats fed N. caerulescens. A. halleri burdened the muscle, small intestinal, and kidney tissues with Cd to a greater extent than did N. caerulescens. However, the spleen, testes, bone and liver were significantly more burdened with Cd by N. caerulescens. In both experimental groups (rats given N. caerulescens as well as those given A. halleri), the highest Cd concentrations were found (in descending order) in the kidneys > liver > small intestine > spleen > testes > bone > and muscle. This information is vital in situations where, for example, livestock can graze on these plants or when other animals and humans accidentally consume these plants.

Keywords

Bert V, Bonnin I, Saumitou-Laprade P, de Laguerie P, Petit D (2002): Do Arabidopsis halleri from nonmetallicolous populations accumulate zinc and cadmium more effectively than those from metallicolous populations? New Phytologist, 155, 47–57. doi: 10.1046/j.1469-8137.2002.00432x.10.1046/j.1469-8137.2002.00432xOpen DOISearch in Google Scholar

Bothe H, Slomka A (2017): Divergent biology of facultative heavy metal plants. Journal of Plant Physiology, 219, 45–61. doi: 10.1016j.jplph.2017.08.014.10.1016/j.jplph.2017.08.014Search in Google Scholar

Chatterjee S, Sarma MK, Deb U, Steinhauser G, Walther C, Gupta DK (2017): Mushrooms: from nutrition to mycoremediation. Environmental Science and Pollution Research, 24, 19480–19493. doi: 10.1007/s11356-017-9826-3.10.1007/s11356-017-9826-3Open DOISearch in Google Scholar

Chen Y, Vymazal J, Brezinova T, Kozeluh M, Kule L, Huang J, Chen Z (2016): Occurrence, removal and environmental risk assessment of pharmaceuticals and personal care products in rural wastewater treatment wetlands. Science of the Total Environment, 566–567, 1660–1669.10.1016/j.scitotenv.2016.06.069Search in Google Scholar

Clemens S (2006): Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie, 88, 1707–1719. doi: 10.1016/j.biochi.2006.07.003.10.1016/j.biochi.2006.07.003Open DOISearch in Google Scholar

Huguet S, Bert V, Laboudigue A, Barthes V, Isaure MP, Llorens I, Schat H, Sarret G (2012): Cd speciation and localization in the hyperaccumulator Arabidopsis halleri. Environmental and Experimental Botany, 82, 54–65. doi: 10.1016/j.envexpbot.2012.03.011.10.1016/j.envexpbot.2012.03.011Open DOISearch in Google Scholar

Jankovska I, Sloup V, Szakova J, Langrova I, Sloup S (2016): How the tapeworm Hymenolepis diminuta affects zinc and cadmium accumulation in a host fed a hyperaccumulating plant (Arabidopsis halleri). Environmental Science and Pollution Research, 23, 19126–19133. doi: 10.1007/s11356-016-7123-1.10.1007/s11356-016-7123-1Open DOISearch in Google Scholar

Klaassen CD, Liu J, Diwan BA (2009): Metallothionein protection of cadmium toxicity. Toxicology and Applied Pharmacology, 238, 215–220. doi: 10.1016/j.taap.2009.03.026.10.1016/j.taap.2009.03.026Open DOISearch in Google Scholar

Kupper H, Lombi E, Zhao FJ, McGrath SP (2000): Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta, 212, 75–84. doi: 10.1007/s004250000366.10.1007/s004250000366Open DOISearch in Google Scholar

Liu Z, He X, Chen W (2011): Effect of cadmium hyperaccumulation on the concentrations of four trace elements in Lonicera japonica Thunb. Ecotoxicology, 20, 698–705. doi: 10.1007/s10646-011-0609-1.10.1007/s10646-011-0609-1Open DOISearch in Google Scholar

Malaspina P, Tixi S, Brunialti G, Frati L, Paoli L, Giordani P, Modenesi P, Loppi S (2014): Biomonitoring urban air pollution using transplanted lichens: element concentrations across seasons. Environmental Science and Pollution Research, 21, 13069–13080. doi: 10.1007/s11356-014-3222-z.10.1007/s11356-014-3222-zOpen DOISearch in Google Scholar

McLaughlin MJ, Parker DR, Clarke JM (1999): Metals and micronutrients – food safety issues. Field Crops Research, 60, 143–163. doi: 10.1016/S0378-4290(98)00137-3.10.1016/S0378-4290(98)00137-3Open DOISearch in Google Scholar

Meyer CL, Kostecka AA, Saumitou-Laprad P, Creach A, Castric V, Pauwels M, Frerot H (2010): Variability of zinc tolerance among and within populations of the pseudometallophyte species Arabidopsis halleri and possible role of directional selection. New Phytologist, 185, 130–142. doi: 10.1111/j.1469-8137.2009.03062.x.10.1111/j.1469-8137.2009.03062.xOpen DOISearch in Google Scholar

Pence NS, Larsen PB, Ebbs SD, Letham DLD, Lasat MM, Garvin DF, Eide D, Kochian LV (2000): The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proceedings of the National Academy of Sciences of the United States of America, 97, 4956–4960. doi: 10.1073/pnas.97.9.4956.10.1073/pnas.97.9.4956Open DOISearch in Google Scholar

Raad F, Nasreddine L, Hilan C, Bartosik M, Parent-Massin D (2014): Dietary exposure to aflatoxins, ochratoxin A and deoxynivalenol from a total diet study in an adult urban Lebanese population. Food and Chemical Toxicology, 73, 35–43. doi: 10.1016/j.fct.2014.07.034.10.1016/j.fct.2014.07.034Open DOISearch in Google Scholar

Sloup V, Jankovska I, Langrova I, Stolcova M. Sloup S, Nechybova S, Perinkova P (2016): Changes of some biochemical parameters after the high doses administration of zinc lactate. Scientia Agriculturae Bohemica, 47, 148–153. doi: 10.1515/sab-2016-0022.10.1515/sab-2016-0022Open DOISearch in Google Scholar

Sloup V, Jankovska I, Nechybova S, Perinkova P, Langrova I (2017): Zinc in the animal organism: A review. Scientia Agriculturae Bohemica, 48, 13–21. doi: 10.1515/sab-2017-0003.10.1515/sab-2017-0003Open DOISearch in Google Scholar

Valek P, Sloup V, Jankovska I, Langrova I, Szakova J, Miholova J, Horakova B, Krivska D (2015): Can the hyperaccumulating plant Arabidopsis halleri in feed influence a given consumer organism (Rattus norvegicus var. alba)? Bulletin of Environmental Contamination and Toxicology, 95, 116–121. doi: 10.1007/s00128-015-1555-z.10.1007/s00128-015-1555-zOpen DOISearch in Google Scholar

Vymazal J (2017): The use of constructed wetlands for nitrogen removal from agricultural drainage: A review. Scientia Agriculturae Bohemica, 48, 82-91. doi: 10.1515/sab-2017-0009.10.1515/sab-2017-0009Open DOISearch in Google Scholar

Wagner GJ (1993): Accumulation of cadmium in crop plants and its consequences to human health. Advances in Agronomy, 51, 173–212. doi: 10.1016/S0065-2113(08)60593-3.10.1016/S0065-2113(08)60593-3Open DOISearch in Google Scholar

Zhao FJ, Jiang RF, Dunham SJ, McGrath SP (2006): Cadmium uptake, translocation and tolerance in the hyperaccumulator Arabidopsis halleri. New Phytologist, 172, 646–654. doi: 10.1111/j.1469-8137.2006.01867.x.10.1111/j.1469-8137.2006.01867.xOpen DOISearch in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo