[Bert V, Bonnin I, Saumitou-Laprade P, de Laguerie P, Petit D (2002): Do Arabidopsis halleri from nonmetallicolous populations accumulate zinc and cadmium more effectively than those from metallicolous populations? New Phytologist, 155, 47–57. doi: 10.1046/j.1469-8137.2002.00432x.10.1046/j.1469-8137.2002.00432x]Open DOISearch in Google Scholar
[Bothe H, Slomka A (2017): Divergent biology of facultative heavy metal plants. Journal of Plant Physiology, 219, 45–61. doi: 10.1016j.jplph.2017.08.014.10.1016/j.jplph.2017.08.014]Search in Google Scholar
[Chatterjee S, Sarma MK, Deb U, Steinhauser G, Walther C, Gupta DK (2017): Mushrooms: from nutrition to mycoremediation. Environmental Science and Pollution Research, 24, 19480–19493. doi: 10.1007/s11356-017-9826-3.10.1007/s11356-017-9826-3]Open DOISearch in Google Scholar
[Chen Y, Vymazal J, Brezinova T, Kozeluh M, Kule L, Huang J, Chen Z (2016): Occurrence, removal and environmental risk assessment of pharmaceuticals and personal care products in rural wastewater treatment wetlands. Science of the Total Environment, 566–567, 1660–1669.10.1016/j.scitotenv.2016.06.069]Search in Google Scholar
[Clemens S (2006): Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie, 88, 1707–1719. doi: 10.1016/j.biochi.2006.07.003.10.1016/j.biochi.2006.07.003]Open DOISearch in Google Scholar
[Huguet S, Bert V, Laboudigue A, Barthes V, Isaure MP, Llorens I, Schat H, Sarret G (2012): Cd speciation and localization in the hyperaccumulator Arabidopsis halleri. Environmental and Experimental Botany, 82, 54–65. doi: 10.1016/j.envexpbot.2012.03.011.10.1016/j.envexpbot.2012.03.011]Open DOISearch in Google Scholar
[Jankovska I, Sloup V, Szakova J, Langrova I, Sloup S (2016): How the tapeworm Hymenolepis diminuta affects zinc and cadmium accumulation in a host fed a hyperaccumulating plant (Arabidopsis halleri). Environmental Science and Pollution Research, 23, 19126–19133. doi: 10.1007/s11356-016-7123-1.10.1007/s11356-016-7123-1]Open DOISearch in Google Scholar
[Klaassen CD, Liu J, Diwan BA (2009): Metallothionein protection of cadmium toxicity. Toxicology and Applied Pharmacology, 238, 215–220. doi: 10.1016/j.taap.2009.03.026.10.1016/j.taap.2009.03.026]Open DOISearch in Google Scholar
[Kupper H, Lombi E, Zhao FJ, McGrath SP (2000): Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta, 212, 75–84. doi: 10.1007/s004250000366.10.1007/s004250000366]Open DOISearch in Google Scholar
[Liu Z, He X, Chen W (2011): Effect of cadmium hyperaccumulation on the concentrations of four trace elements in Lonicera japonica Thunb. Ecotoxicology, 20, 698–705. doi: 10.1007/s10646-011-0609-1.10.1007/s10646-011-0609-1]Open DOISearch in Google Scholar
[Malaspina P, Tixi S, Brunialti G, Frati L, Paoli L, Giordani P, Modenesi P, Loppi S (2014): Biomonitoring urban air pollution using transplanted lichens: element concentrations across seasons. Environmental Science and Pollution Research, 21, 13069–13080. doi: 10.1007/s11356-014-3222-z.10.1007/s11356-014-3222-z]Open DOISearch in Google Scholar
[McLaughlin MJ, Parker DR, Clarke JM (1999): Metals and micronutrients – food safety issues. Field Crops Research, 60, 143–163. doi: 10.1016/S0378-4290(98)00137-3.10.1016/S0378-4290(98)00137-3]Open DOISearch in Google Scholar
[Meyer CL, Kostecka AA, Saumitou-Laprad P, Creach A, Castric V, Pauwels M, Frerot H (2010): Variability of zinc tolerance among and within populations of the pseudometallophyte species Arabidopsis halleri and possible role of directional selection. New Phytologist, 185, 130–142. doi: 10.1111/j.1469-8137.2009.03062.x.10.1111/j.1469-8137.2009.03062.x]Open DOISearch in Google Scholar
[Pence NS, Larsen PB, Ebbs SD, Letham DLD, Lasat MM, Garvin DF, Eide D, Kochian LV (2000): The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proceedings of the National Academy of Sciences of the United States of America, 97, 4956–4960. doi: 10.1073/pnas.97.9.4956.10.1073/pnas.97.9.4956]Open DOISearch in Google Scholar
[Raad F, Nasreddine L, Hilan C, Bartosik M, Parent-Massin D (2014): Dietary exposure to aflatoxins, ochratoxin A and deoxynivalenol from a total diet study in an adult urban Lebanese population. Food and Chemical Toxicology, 73, 35–43. doi: 10.1016/j.fct.2014.07.034.10.1016/j.fct.2014.07.034]Open DOISearch in Google Scholar
[Sloup V, Jankovska I, Langrova I, Stolcova M. Sloup S, Nechybova S, Perinkova P (2016): Changes of some biochemical parameters after the high doses administration of zinc lactate. Scientia Agriculturae Bohemica, 47, 148–153. doi: 10.1515/sab-2016-0022.10.1515/sab-2016-0022]Open DOISearch in Google Scholar
[Sloup V, Jankovska I, Nechybova S, Perinkova P, Langrova I (2017): Zinc in the animal organism: A review. Scientia Agriculturae Bohemica, 48, 13–21. doi: 10.1515/sab-2017-0003.10.1515/sab-2017-0003]Open DOISearch in Google Scholar
[Valek P, Sloup V, Jankovska I, Langrova I, Szakova J, Miholova J, Horakova B, Krivska D (2015): Can the hyperaccumulating plant Arabidopsis halleri in feed influence a given consumer organism (Rattus norvegicus var. alba)? Bulletin of Environmental Contamination and Toxicology, 95, 116–121. doi: 10.1007/s00128-015-1555-z.10.1007/s00128-015-1555-z]Open DOISearch in Google Scholar
[Vymazal J (2017): The use of constructed wetlands for nitrogen removal from agricultural drainage: A review. Scientia Agriculturae Bohemica, 48, 82-91. doi: 10.1515/sab-2017-0009.10.1515/sab-2017-0009]Open DOISearch in Google Scholar
[Wagner GJ (1993): Accumulation of cadmium in crop plants and its consequences to human health. Advances in Agronomy, 51, 173–212. doi: 10.1016/S0065-2113(08)60593-3.10.1016/S0065-2113(08)60593-3]Open DOISearch in Google Scholar
[Zhao FJ, Jiang RF, Dunham SJ, McGrath SP (2006): Cadmium uptake, translocation and tolerance in the hyperaccumulator Arabidopsis halleri. New Phytologist, 172, 646–654. doi: 10.1111/j.1469-8137.2006.01867.x.10.1111/j.1469-8137.2006.01867.x]Open DOISearch in Google Scholar