1. bookVolume 31 (2013): Issue 2 (April 2013)
Journal Details
License
Format
Journal
eISSN
2083-134X
ISSN
2083-1331
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Comparative X-ray diffraction and Mössbauer spectroscopy studies of BiFeO3 ceramics prepared by conventional solid-state reaction and mechanical activation

Published Online: 20 Apr 2013
Volume & Issue: Volume 31 (2013) - Issue 2 (April 2013)
Page range: 211 - 220
Journal Details
License
Format
Journal
eISSN
2083-134X
ISSN
2083-1331
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

The aim of this work was to prepare BiFeO3 by modified solid-state sintering and mechanical activation processes and to investigate the structure and hyperfine interactions of the material. X-ray diffraction and Mössbauer spectroscopy were applied as complementary methods. In the case of sintering, BiFeO3 phase was obtained from the mixture of precursors with 3 and 5 % excess of Bi2O3 during heating at 1023 K. Small amounts of impurities such as Bi2Fe4O9 and sillenite were recognized. In the case of mechanical activation, the milling of stoichiometric amounts of Bi2O3 and Fe2O3 followed by isothermal annealing at 973 K resulted in formation of the mixture of BiFeO3, Bi2Fe4O9, sillenite and hematite. After separate milling of individual Bi2O3 and Fe2O3 powders, mixing, further milling and thermal processing, the amount of desired BiFeO3 pure phase was significantly increased (from 70 to 90 %, as roughly estimated). From Mössbauer spectra, the hyperfine interaction parameters of the desired BiFeO3 compound, paramagnetic impurities of Bi2Fe4O9 and sillenite were determined. The main conclusion is that the lowest amount of impurities was obtained for BiFeO3 with 3 % excess of Bi2O3, which was sintered at 1023 K. However, in the case of mechanical activation, the pure phase formed at a temperature by 50 K lower as compared to solid-state sintering temperature. X-ray diffraction and Mössbauer spectroscopy revealed that for both sintered and mechanically activated BiFeO3 compounds, thermal treatment at elevated temperature led to a partial eliminating of the paramagnetic impurities.

Keywords

[1] Khomskii D.I., J. Magn. Magn. Mater., 306 (2006), 1. http://dx.doi.org/10.1016/j.jmmm.2006.01.23810.1016/j.jmmm.2006.01.238Search in Google Scholar

[2] Blaauw C., Van Der Woude F., J. Phys. C: Solid State Phys., 6 (1973), 1422. http://dx.doi.org/10.1088/0022-3719/6/8/00910.1088/0022-3719/6/8/009Search in Google Scholar

[3] Palewicz A., Szumiata T., Przeniosło R., Sosnowska I., Margiolaki I., Solid State Commun., 140 (2006), 359. http://dx.doi.org/10.1016/j.ssc.2006.08.04610.1016/j.ssc.2006.08.046Search in Google Scholar

[4] Wang J. et al., Science, 299 (2003), 1719. 10.1126/science.108061512637741Search in Google Scholar

[5] Lebeugle D. et al., Phys. Rev. B, 76 (2007), 024116. http://dx.doi.org/10.1103/PhysRevB.76.02411610.1103/PhysRevB.76.024116Search in Google Scholar

[6] Freitas V.F., Grande H.L.C., De Medeiros S.N., Santos I.A., Cotica L.F., Coelho A.A., J. Alloy. Comp., 461 (2008), 48. http://dx.doi.org/10.1016/j.jallcom.2007.07.06910.1016/j.jallcom.2007.07.069Search in Google Scholar

[7] Santos I.A. et al., J. Non-Cryst. Sol., 352 (2006), 3721. http://dx.doi.org/10.1016/j.jnoncrysol.2006.02.12210.1016/j.jnoncrysol.2006.02.122Search in Google Scholar

[8] Shannigrahi S.R., Huang A., Tripathy D., Adeyeye A.O., J. Magn. Magn. Mater., 320 (2008), 2215. http://dx.doi.org/10.1016/j.jmmm.2008.04.11910.1016/j.jmmm.2008.04.119Search in Google Scholar

[9] Zhang S.T. et al., Appl. Phys. Lett., 88 (2006), 162901. http://dx.doi.org/10.1063/1.219592710.1063/1.2195927Search in Google Scholar

[10] Mishra R.K., Pradhan D.K., Choudhary R.N.P., Banerjee A., J. Magn. Magn. Mater., 320 (2008), 2602. http://dx.doi.org/10.1016/j.jmmm.2008.05.00510.1016/j.jmmm.2008.05.005Search in Google Scholar

[11] Yuan G.L., Or S.W., Wang Y.P., Liu Z.G., Liu J.M., Solid State Commun., 138 (2006), 76. http://dx.doi.org/10.1016/j.ssc.2006.02.00510.1016/j.ssc.2006.02.005Search in Google Scholar

[12] Jia D.C., Xu J.H., Ke H., Wang W., Zhou Y., J. Europ. Ceramic Soc., 29 (2009), 3099. http://dx.doi.org/10.1016/j.jeurceramsoc.2009.04.02310.1016/j.jeurceramsoc.2009.04.023Search in Google Scholar

[13] Li M.C., Driscoll J., Liu L.H., Zhao L.C., Mat. Sci. Eng. A, 438–440 (2006), 346. http://dx.doi.org/10.1016/j.msea.2006.01.11710.1016/j.msea.2006.01.117Search in Google Scholar

[14] Maurya D., Thota H., Nalwa K.S. and Garg A., J. Alloy. Comp., 477 (2009), 780. http://dx.doi.org/10.1016/j.jallcom.2008.10.15510.1016/j.jallcom.2008.10.155Search in Google Scholar

[15] Szafraniak I., Połomska M., Hilczer B., Pietraszko A., Kępiński L., J. Europ. Ceramic Soc., 27 (2007), 4399. http://dx.doi.org/10.1016/j.jeurceramsoc.2007.02.16310.1016/j.jeurceramsoc.2007.02.163Search in Google Scholar

[16] ICSD collection codes: 15299, 20288, 20372, 20618, 22342, 28027, 28622, 75324, 51664, 97591, 109370, 154394. Search in Google Scholar

[17] JCPDS card number 25-0090. Search in Google Scholar

[18] ICSD collection codes: 68627, 62719. Search in Google Scholar

[19] ICDD code: 01-070-5668. Search in Google Scholar

[20] Williamson G.K., Hall W.H., Acta Metallurg., 1 (1953), 22. http://dx.doi.org/10.1016/0001-6160(53)90006-610.1016/0001-6160(53)90006-6Search in Google Scholar

[21] ICDD code: 20-0836. Search in Google Scholar

[22] Thosar B.V., Srivastava J.K., Iyengar P.K., Bhargava S.C., Advances in Mössbauer Spectroscopy. Applications to Physics, Chemistry and Biology, Elsevier Scientific Publishing Company, Amsterdam-Oxford-New York, 1983. Search in Google Scholar

[23] De Sitter J., Dauwe C., De Grave E., Govaert A., Solid State Commun., 18(5) (1976), 645. http://dx.doi.org/10.1016/0038-1098(76)91502-710.1016/0038-1098(76)91502-7Search in Google Scholar

[24] Mackenzie K.J.D., Dougherty T., Barrel J., J. Europ. Ceramic Soc., 28 (2008), 499. http://dx.doi.org/10.1016/j.jeurceramsoc.2007.03.01210.1016/j.jeurceramsoc.2007.03.012Search in Google Scholar

[25] Cornell R.M., Schwertmann U., The iron oxides. Structure, properties, reactions, occurrence and uses, Weinheim-New York-Basel-Cambridge-Tokyo, VCH, 1996. Search in Google Scholar

[26] Matteazzi P., Le Caër G., Mat. Sci. Eng. A, 149 (1991), 135. http://dx.doi.org/10.1016/0921-5093(91)90795-O10.1016/0921-5093(91)90795-OSearch in Google Scholar

[27] Skulj I., Douvalis A.P., Harris I.R., J. Alloy. Comp., 407 (2006), 304. http://dx.doi.org/10.1016/j.jallcom.2005.06.03310.1016/j.jallcom.2005.06.033Search in Google Scholar

[28] Park T.J., Papaefthymiou G.C., Viescas A.J., Moodenbaugh A.R., Wong S.S., Nano Lett. 7(3) (2007), 766. http://dx.doi.org/10.1021/nl063039w10.1021/nl063039w17324002Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo