1. bookVolume 30 (2012): Issue 1 (March 2012)
Journal Details
License
Format
Journal
eISSN
2083-134X
ISSN
2083-1331
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Open Access

Photocatalytic performance of titania nanospheres deposited on graphene in coumarin oxidation reaction

Published Online: 16 Jun 2012
Volume & Issue: Volume 30 (2012) - Issue 1 (March 2012)
Page range: 32 - 38
Journal Details
License
Format
Journal
eISSN
2083-134X
ISSN
2083-1331
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

In this paper, we present a study on enhanced photocatalytic performance of TiO2 nanospheres deposited on graphene (n-TiO2-G) in a process of coumarin oxidation. The enhancement of the photoactivity has been observed in respect to commercial TiO2 P25. The presented material was prepared in two steps: (i) hydrolysis of titanium (IV) butoxide (TBT) in ethanol solution with simultaneous deposition on graphene oxide (GO) and (ii) calcination of TiO2-GO to form anatase-TiO2 and reduce GO to graphene. The nanomaterial was characterized by transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), thermogravimetric analysis (TGA), Fourier-Transformed Infrared spectroscopy and Raman spectroscopy. In the presented photocatalytic process the fluorescence was used to detect •OH formed on a photo-illuminated n-TiO2-G surface using coumarin which readily reacted with •OH to produce highly fluorescent 7-hydroxycoumarin.

Keywords

[1] TARANTO J., FROCHOT D., PICHAT P., Sep. Pur. Techn., 67 (2009), 187. http://dx.doi.org/10.1016/j.seppur.2009.03.01710.1016/j.seppur.2009.03.017Search in Google Scholar

[2] PEKAKIS P.A., XEKOUKOULOTAKIS N.P., MANTZAVINOS D., Wat. Res., 40 (2006), 1276. http://dx.doi.org/10.1016/j.watres.2006.01.01910.1016/j.watres.2006.01.01916510167Search in Google Scholar

[3] SUBRAMANIAN V.E., WOLF E., KAMAT P.V., J. Am. Chem. Soc., 126 (2004), 4943. http://dx.doi.org/10.1021/ja031519910.1021/ja031519915080700Search in Google Scholar

[4] HWAJIN K., WONYONG C., Appl. Cat. B: Environ., 69 (2007), 127. http://dx.doi.org/10.1016/j.apcatb.2006.06.01110.1016/j.apcatb.2006.06.011Search in Google Scholar

[5] KAMAT P.V., Pure Appl. Chem., 74 (2002), 1693. http://dx.doi.org/10.1351/pac20027409169310.1351/pac200274091693Search in Google Scholar

[6] HUANG J., WANG X., HOU Y., CHEN X., WU L., WANG X., FU X., Microporous and Mesoporous Mat., 110 (2008), 543. http://dx.doi.org/10.1016/j.micromeso.2007.06.05510.1016/j.micromeso.2007.06.055Search in Google Scholar

[7] GEIM A.K., NOVOSELOV K.S., Nat. Mat., 6 (2007), 183. http://dx.doi.org/10.1038/nmat184910.1038/nmat184917330084Search in Google Scholar

[8] LI X.L., WANG X.R., ZHANG L., LEE S.W., DAI H.J., Science, 319 (2008), 1229. http://dx.doi.org/10.1126/science.115087810.1126/science.115087818218865Search in Google Scholar

[9] BALANDIN A.A. et al., Nano Lett., 8 (2008), 902. http://dx.doi.org/10.1021/nl073187210.1021/nl073187218284217Search in Google Scholar

[10] LEE C., WEI X.D., KYSAR J.W., HONE J., Science, 321 (2008), 385. http://dx.doi.org/10.1126/science.115799610.1126/science.115799618635798Search in Google Scholar

[11] WANG X., ZHI L.J., MULLEN K., Nano Lett. 8, 323 (2008). http://dx.doi.org/10.1021/nl072838r10.1021/nl072838r18069877Search in Google Scholar

[12] CHEN S., ZHU J., WU X., HAN Q., WANG X., Acs Nano, 4 (2010), 2822. http://dx.doi.org/10.1021/nn901311t10.1021/nn901311t20384318Search in Google Scholar

[13] CHANG Y. et al., Toxicol. Lett., 200 (2011), 201. http://dx.doi.org/10.1016/j.toxlet.2010.11.01610.1016/j.toxlet.2010.11.01621130147Search in Google Scholar

[14] YOO D.H. et al., Curr. Appl. Phys., 11 (2011), 805. http://dx.doi.org/10.1016/j.cap.2010.11.07710.1016/j.cap.2010.11.077Search in Google Scholar

[15] ZHANG X.Y., LI H.P., CUI X.L., Chin. J. Inorg. Chem., 25 (2009), 1903. Search in Google Scholar

[16] WANG Y., SHI R., LIN J., ZHU Y., Appl. Cat. B: Environ., 100 (2010), 179. http://dx.doi.org/10.1016/j.apcatb.2010.07.02810.1016/j.apcatb.2010.07.028Search in Google Scholar

[17] ZHANG H., LV X., LI Y., WANG Y., LI J., Acs Nano, 4 (2010), 380. http://dx.doi.org/10.1021/nn901221k10.1021/nn901221k20041631Search in Google Scholar

[18] GUO J., ZHU S., CHEN Z., LI Y., YU Z., LIU Q., LI J., FENG C., ZHANG D., Ultrason. Sonochem., 18 (2011), 1082. http://dx.doi.org/10.1016/j.ultsonch.2011.03.02110.1016/j.ultsonch.2011.03.02121482166Search in Google Scholar

[19] WANG F., ZHANG K., J. Mol. Cat. A: Chem., 345 (2011), 101. http://dx.doi.org/10.1016/j.molcata.2011.05.02610.1016/j.molcata.2011.05.026Search in Google Scholar

[20] ZHANG Y., PAN Ch., J. Mater. Sci., 46 (2011), 2622. http://dx.doi.org/10.1007/s10853-010-5116-x10.1007/s10853-010-5116-xSearch in Google Scholar

[21] KAMEGAWA T., YAMAHANA D., YAMASHITA H., J. Phys. Chem. C, 114 (2010), 15049. 10.1021/jp105526dSearch in Google Scholar

[22] XU T., ZHANG L., CHENG H., ZHU Y., Appl. Catal. B., 101 (2011), 382. http://dx.doi.org/10.1016/j.apcatb.2010.10.00710.1016/j.apcatb.2010.10.007Search in Google Scholar

[23] MARCANO D.C. et al., Acs Nano, 4 (2010), 4806. http://dx.doi.org/10.1021/nn100636810.1021/nn1006368Search in Google Scholar

[24] WOJTONISZAK M., ZIELINSKA B., CHEN X., KALENCZUK R.J., BOROWIAK-PALEN E., J. Mater. Sci., 47 (2012), 3185. http://dx.doi.org/10.1007/s10853-011-6153-910.1007/s10853-011-6153-9Search in Google Scholar

[25] JEONG H.K., LEE Y.P., JIN M.H., KIM E.S., BAE J.J., LEE Y.H., Chem. Phys. Lett., 470 (2009), 258. http://dx.doi.org/10.1016/j.cplett.2009.01.05010.1016/j.cplett.2009.01.050Search in Google Scholar

[26] LAZAR G., ZELLAMAA K., VASCAN I., STAMATE M., LAZAR I., RUSU I., J. Optoelectr. and Adv. Mat., 7 (2005), 647. Search in Google Scholar

[27] WANG G., WANG B., PARK J., YANG J., SHEN X., YAO J., Carbon, 47 (2009), 68. http://dx.doi.org/10.1016/j.carbon.2008.09.00210.1016/j.carbon.2008.09.002Search in Google Scholar

[28] KUMAR P.M., BADRINARAYANAN S., SASTRY M., Thin Solid Films, 358 (2000), 122. http://dx.doi.org/10.1016/S0040-6090(99)00722-110.1016/S0040-6090(99)00722-1Search in Google Scholar

[29] MEROUANI A., AMARDIJA-ADNANI H., International Scientific Journal for Alternative Energy and Ecology, 6 (2008), 151. Search in Google Scholar

[30] OHSAKA T., J. Phys. Soc. Jpn., 48 (1980), 1661. http://dx.doi.org/10.1143/JPSJ.48.166110.1143/JPSJ.48.1661Search in Google Scholar

[31] FERRARI A.C., ROBERTSON J., Phys. Rev. B, 61 (2000), 14095. http://dx.doi.org/10.1103/PhysRevB.61.1409510.1103/PhysRevB.61.14095Search in Google Scholar

[32] XIANG Q., YU J., WONG P.K., J. Colloid Interf. Sci., 357 (2011), 163. http://dx.doi.org/10.1016/j.jcis.2011.01.09310.1016/j.jcis.2011.01.093Search in Google Scholar

[33] ISHIBASHI K., FUJISHIMA A., WATANABE T., HASHIMOTO K., Electrochem. Commun., 2 (2000), 207. http://dx.doi.org/10.1016/S1388-2481(00)00006-010.1016/S1388-2481(00)00006-0Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo